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ABSTRACT

Canonical correlation analysis (CCA) is equivalent to finding mu-
tual information-maximizing projections for normally distributed
data. We remove the restriction of normality by non-parametric
estimation, and formulate the problem of finding dependent com-
ponents with a connection to Bayes factors. The method is applied
for characterizing yeast stress by finding what is in common in
several different stress conditions.

1. INTRODUCTION

Given two data sets, CCA [1] finds a component from both of
them, such that the components correlate maximally. The second
pair of components is sought in the same way, with the additional
constraint of being uncorrelated with the first, and so on. CCA can
be formulated as a generalized linear eigenvalue problem, which
generalizes nicely to multiple data sets. Several other generaliza-
tions exist (some listed in Section 3).

It can be shown [2] that the CCA-components maximize mu-
tual information between the data sets, assuming multinormal data
(pursued further for normal data in [3]). The idea of maximizing
mutual information between representations of data sets has earlier
been applied to nonlinear projections [4] and clustering (where the
projection is on multinomial cluster indexes) [5, 6, 7] as well. The
key idea in these works is that it is not necessary to define a (gen-
erative) model for the dependency between the data sets; a semi-
parametric representation will learn the necessary dependencies.

Mutual information is a natural measure of statistical depen-
dency for generalizing CCA to non-Gaussian distributions. In fact,
a closely related method, discriminant analysis, has been general-
ized by maximizing variants of or approximations to mutual infor-
mation, computed of non-parametric estimates of the data distri-
bution (after the projection) [8].

We have shown earlier for discriminant analysis [9] that a sim-
pler approach of finding the projection that maximizes likelihood
of predictions outperforms the earlier approximations, while the
cost function asymptotically converges to mutual information. The
approach can be considered as a rigorous finite-data method for
non-parametric estimation of discriminant components.

The same formulation does not work for CCA since the cost
function is symmetric, and cannot be expressed as a likelihood.
For clustering we have, however, been able to formulate a rigorous
finite-data cost function that asymptotically converges to mutual
information [10, 11]. It is a Bayes factor comparing two models;
in the one the data sets are assumed dependent and in the other not.

In this paper we take a step towards a rigorous generalization
of CCA to non-Gaussian data. We present a computationally fea-

sible method for finding dependency-maximizing projections, and
discuss how to take the finite-data uncertainty into account.

2. METHOD

2.1. Measuring dependency

Denote by D = {D1, ..., DN} a collection of N data sets, with M
vectorial samples each. The data come in tuples of co-occurring
samples, one from each set. Denote by f = {f1, ..., fN} a set
of deterministic mappings from D to respective latent variables
S = {S1, ..., SN}. The mappings are parameterized by θ =
{θ1, ..., θN}. Consider two hypotheses, Hd and Hi, where Hd

assumes that there is some kind of dependency between the data
sets which can be captured by the latent variables. Hi assumes
there is no such dependency.

The likelihood ratio

P (f(D; θ)|Hd)

P (f(D; θ)|Hi)
(1)

measures the dependency captured by the latent variables of a
model with parameters θ. Maximizing (1) is asymptotically equiv-
alent to maximizing the mutual information of the latent variables.
This can be shown easily by taking the log of (1) to the limit of an
infinite amount of data.

Maximizing (1) gives the model that captures dependencies
optimally, but the parameters may overfit a given finite data set.
We will next discuss a theoretical connection which results in new
ways of handling the uncertainty.

The likelihood ratio (1) is related to a Bayesian measure of de-
pendency where the parameters have been integrated out, namely
the Bayes factor

BF =
P (D|Hd)

P (D|Hi)
. (2)

Theorem 1 The Bayes factor (2) can equivalently be written as

BF =

∫
P (f(D; θ)|Hd)

P (f(D; θ)|Hi)
P (θ|D, Hi)dθ , (3)

under the following three assumptions:

1. The prior probabilities for the mappings do not depend on
the hypothesis, that is, P (θ|Hd) = P (θ1|Hi)...P (θN |Hi).

2. The probabilities of observed data, given the latent vari-
ables, do not depend on the hypothesis.

3. The mappings f are deterministic.

The proof is given in Appendix A.

V - 2090-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



The second assumption is the crucial modeling assumption.
If the models are not allowed to model dependencies between the
observed data sets given the latent variables, then the possible de-
pendencies must be captured already in the latent space.

According to Theorem 1, the Bayes factor (3) is an integral
over different mappings. The first part of the integrand is exactly
(1), and it would be tempting to search for dependencies by maxi-
mizing the whole integrand. However, the result would be identi-
cal to MAP estimation of the joint model P (D|Hd), and our goal
is not joint density modeling; while it captures dependencies it
models data set-specific variation as well.

Nevertheless, the formula (3) suggests that we could form a
continuum between the two extremes of joint density modeling
and maximization of the (empirical) mutual information by using
a tunable “regularization” term in place of P (θ|D, Hi). In this
paper we take the limit of uninformative (flat) term, and take care
of the regularization by a simpler practical method: Leave-one-out
during density estimation (details below).

2.2. Estimation of the dependency-maximizing projections

In this work the model family for both hypotheses is the set of all
linear projections of a specific dimensionality. It is parameterized
by a separate projection matrix for each data space. The vectors in
θn are restricted to unit length for convenience, and in (1) we have
fn(Dn; θn) = θT

n Dn for all 1 ≤ n ≤ N .
Computing (1) is impossible without some further assump-

tions, because P (θT D|H) is unknown for both hypotheses. We
estimate it for both hypotheses with non-parametric Parzen den-
sity estimators in the latent space. The approach is feasible, be-
cause the projections are assumed to be low-dimensional, and thus
the estimates do not suffer from the curse of dimensionality. A
main advantage is that the method is non-parametric and makes no
assumptions about the distribution of the latent variables.

As a further simplification we seek for only one-dimensional
projection for each data space. If more dimensions are needed, one
can remove the already projected dimension by transforming the
data by I − θθT , and then repeat the process. This is an approxi-
mation to the solution that would be found by directly estimating
a projection to some chosen dimensionality.

The densities are estimated on a leave-one-out basis. If needed,
we can speed up the computation by picking a subset of K samples
as kernels, and use only them for density estimation. The number
of kernels needed for sufficient accuracy depends mainly on the
dimensionality of the latent space (here the number of data sets).

We use isotropic Gaussian kernels for estimating the densities.
For one-dimensional projections (used for computing P (θT

n Dn|Hi)
for each n) the kernel has a single parameter, the width of the
Gaussian. In theory we could optimize the widths during learning,
but it could possibly lead to serious overfitting. Thus the widths are
here estimated individually for each data set by a simple heuristic:
select the kernel width that gives maximal likelihood on the first
principal component of the data.

The joint probability P (θT D|Hd) is estimated using Gaussian
kernels with diagonal covariance matrix Σ. The diagonal elements
are given by

Σn,n = σnK
1
5− 1

N+4 ,

where σn is the width of the kernel for the nth data set. Thus
the width for the joint kernel is slightly larger than the width of
one-dimensional kernels. The scaling is based on the rule [12] of

using width proportional to K− 1
N+4 for K-kernel estimate in N -

dimensional space when the underlying distribution is normal.
The optimal set of projections is here sought by maximizing

the logarithm of (1) with a conjugate gradient algorithm. The pro-
jections can be initialized randomly, or by using the first principal
component. The final cost function is

M∑
i=1

⎡
⎣log

∑
j �=i

Gj(i|θ, Σ) −
N∑

n=1

log
∑
j �=i

gj(i|θn, σn)

⎤
⎦ , (4)

where gj(i|θn, σ) denotes the value of jth kernel at ith sample,
computed in the projection space of nth data set. The Gj(i|θ, Σ)
is a similar term, but the samples are in the joint space of all pro-
jections. If a regularizing distribution were used in (3), it would
appear here as an additive term.

3. RELATED CCA EXTENSIONS

CCA can be extended to more than two data sets in several ways
[13]. We compare our method with the following extension: search
for the minimal generalized eigenvalues of the problem Aξ =
λBξ, where A is the covariance matrix of D and B is the block-
diagonal matrix of covariances of each data set Dn. Generalized
eigenvectors ξ are the projection vectors, and the method is here
called generalized CCA (gCCA).

Of the several non-linear extensions we consider KernelCCA
[14], which leads to a similar eigenvalue problem, but the data
covariances are replaced with Gram matrices of paired data sets.
The method can be interpreted as a non-linear mapping to a high-
dimensional feature space, where the correlations are maximized.
In practice the feature mappings are not explicitly computed, be-
cause the kernel trick allows directly working with the Gram ma-
trices. The kernelization has one drawback: KernelCCA does not
have an explicit representation for the projection matrices. Such
representations are useful when interpreting the results.

A generalization similar to ours was introduced very recently
[15]. The task was to test the hypothesis of two data sources being
dependent, and the proposed solution was to search for projections
that have maximal mutual information (used as a lower bound for
the test statistic). The result can be interpreted as a generalization
of CCA that is similar to ours in the sense of making no distri-
butional assumptions. The technical difference is in the approx-
imations made for finite data: We regularized likelihood ratios,
whereas in [15] simple approximations to (continuous) mutual in-
formation were made.

4. EXPERIMENTS

4.1. Toy demonstration

We wish to demonstrate that the proposed method finds the same
solution as gCCA when the data is jointly normal and hence depen-
dency means correlation. In addition, we show that the proposed
method works even if the assumption of normality does not hold,
while gCCA may fail.

For these purposes we created three two-dimensional data sets
that have simple linear dependency, that is, there are projections
to one-dimensional spaces that capture the dependency. Each data
set is generated as a M × 2 matrix. The first column of each data
is sorted to increasing order, which gives a perfect dependency.
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Dependent component gCCA Proposed method
Normal 1.5 0.9
Exponential 6.0 1.1
Gamma 3.1 1.2

Table 1. Both gCCA and the proposed method find the correct pro-
jections if all dependent components are normal (first line, the fig-
ures are average angles in degrees between the true and the found
projection). gCCA errors increase noticeably when one of the de-
pendent components is not normal (second and third line).

Fig. 1. The proposed method (left) finds a strong non-linear de-
pendency between a normal (horizontal axis) and an exponential
(vertical axis) variable. gCCA (right) has here found roughly sim-
ilar, but clearly noisier, dependency.

After that the data sets are rotated to random orientation, and some
additive Gaussian noise (standard deviation 0.1) is added.

For the first task all data sets are sampled from the normal
distribution having unit variance. For the second task the depen-
dent component of one data set is sampled from another distribu-
tion, but everything else is still normal. We used exponential and
gamma distributions.

We generated 50 replications of both types of data sets with
M = 500 samples. The estimation error is measured as the av-
erage angle (over all data sets and all replications) between the
estimated and true projections. The results are represented in Ta-
ble 1, and we see that both gCCA and the proposed method always
find a solution close to the real one if all distributions are normal.

If the dependent component of one data set is non-normal,
gCCA often fails to find the true projections. This is seen as a
larger average angle, even though gCCA still occasionally finds
the correct solution. Note that the failures are not because of opti-
mization; gCCA always finds the global optimum.

The difference is illustrated in Figure 1, which shows a scatter-
plot of two one-dimensional projections for both methods. Here
the dependent component in the first data set is normally distrib-
uted, and in the second data set it is exponential. The dependency
found is not linear, but still clear.

4.2. Yeast stress data

We applied the method on gene expression data from [16]. The
data consists of expressions of 5998 yeast genes in different stress-
ful conditions. The expressions are measured a few times in each
condition, giving a short time series for each. We chose five con-
ditions (two heat shocks, DTT exposure, diamide treatment, and
menadione exposure), that is, five data sets. The main common
thing in the conditions should be stress, and hence by searching
for the dependencies we hope to be able to characterize stress.

The proposed method is compared with gCCA and Kernel-

CCA. The samples were divided into five parts, and two-fold test-
ing was performed in each part. This gives 10 independent training
and test sets, each having 600 genes.

For KernelCCA we used Gaussian kernels with unit variance,
and regularization value 0.001 for all pairwise kernels. These pa-
rameters were chosen based on preliminary tests, and they are
close to those used in [14] in KernelICA (an ICA algorithm us-
ing KernelCCA as a contrast function). In more systematical tests
these values could naturally be chosen using a validation set.

To demonstrate the speedup, we also performed ten-fold cross
validation, where each learning set had 5400 genes and randomly
picked K = 270 kernels were used. KernelCCA was left out from
this test because of computational reasons; some non-trivial tricks
would have been needed to solve the eigenproblem with matrices
of size 27.000 × 27.000.

Measuring the performance of the methods is non-trivial, be-
cause the true projections are not known. Multi-information of the
projections could be used as a quality measure in principle, but it is
difficult to estimate it if the dimensionality of the joint projection
space is high. Binned estimates do not work because the number
of bins would clearly exceed the number of samples, and simple
plug-in estimates like (4) were not considered because of possible
bias in favor of the proposed method.

While we cannot come up with a general performance mea-
sure, we have a way to validate the results externally. Gasch [16]
has classified some of the genes as environmental stress response
(ESR) genes, that is, genes that react to various stress conditions.
We can then measure how well the ESR genes are separated from
the rest after projection. For that we used a leave-one-out k-nearest
neighbor classifier (with k arbitrarily fixed to 9) in the joint pro-
jection space, and report the average errors in Table 2.

Besides the classification error, we measured the strength of
the found dependencies by computing the empirical mutual infor-
mation between all pairs of data sets, averaged over the ten folds,
and summarized by their average.

The classification accuracy of the proposed method is roughly
equal to that obtained in the original data, without projections, and
hence the dependent components capture most of the interesting
dependencies. The method outperforms both gCCA and Kernel-
CCA significantly (paired t-test, p < 0.01).

KernelCCA has roughly equal performance to gCCA; the clas-
sification error is a bit worse, but the pairwise mutual information
is better on the average. A reason for the relatively poor perfor-
mance of KernelCCA could be that there seems to be a strong
linear dependency between two of the studied data sets (the heat
shocks), and Gaussian kernels might not be able to find linear de-
pendencies optimally. We should also remember that the list of
ESR genes is not final but only the current draft.

5. DISCUSSION

We have presented a method that generalizes canonical correlation
analysis to non-normal data. The algorithm is based on maximiz-
ing dependency, and distributional assumptions are circumvented
by non-parametric density estimation in the projection spaces.

Using simple generated data, we showed that the proposed
method finds the canonical components if the data is jointly nor-
mal. If it is not, the method still finds the true dependent compo-
nents, while CCA may fail. We also applied the method on a gene
expression data set, and again it outperformed both generalized
CCA and KernelCCA, a non-linear variant of CCA.
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Small training set
Method Classification error Pairwise MI
Original data 6.6% -
Proposed method 6.7% 0.41
Generalized CCA 8.3% 0.21
KernelCCA 8.7% 0.27

Large training set
Method Classification error Pairwise MI
Original data 6.6% -
Proposed method 6.9% 0.40
Generalized CCA 8.3% 0.21

Table 2. The proposed method finds dependent components where
classification of the ESR genes is as easy as in the original data
space, and outperforms other CCA-variants, measured either with
the classification error or the pairwise mutual information. Perfor-
mances of gCCA and KernelCCA are roughly equal.

The current version of the method uses several computational
approximations and assumptions. The main ones are: (i) Currently
one component is sought at a time. Several possible ways to ex-
tend the method to overcome that limitation exist, e.g. parame-
terizing the whole projection matrix using Givens rotations. (ii)
The method currently effectively optimizes the likelihood ratio,
and needs further development. A compromise between depen-
dency and joint modeling was suggested.
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A. PROOF OF THEOREM 1

Multiplying (2) by
∫∫

P (θ, S|D, Hd)dθdS = 1 gives

BF =
P (D|Hd)

P (D|Hi)

∫ ∫
P (θ, S|D, Hd)dθdS

=

∫ ∫
P (D|Hd)P (θ, S|D, Hd)

P (D|Hi)P (θ, S|D, Hi)
P (θ, S|D, Hi)dθdS . (5)

Notice that P (D|H)P (θ, S|D, H) = P (D, θ, S|H) for both hy-
potheses.

We can also write (for both hypotheses) P (D, θ, S|H) as a
product P (D|θ, S, H)P (S|θ, H)P (θ|H). The terms P (θ|H) and
P (D|θ, S, H) cancel in (5) because of the first and second as-
sumptions, respectively. The last term in (5) can equivalently be
written as P (S|θ, D, Hi)P (θ|D, Hi), and we end up with

BF =

∫ ∫
P (S|θ, Hd)

P (S|θ, Hi)
P (S|θ, D, Hi)P (θ|D, Hi)dθdS .

As a final step we use the third assumption, which states that
P (S|θ, D, Hi) is a delta-distribution so that P (S = f(D)) = 1.
Thus P (S|θ, H) = P (f(D)|H) and the integration over S can
be dropped. This finally gives (3).
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