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Abstract— Support Vector Machines (SVM) is a state-of-the-
art learning machine and has found a great deal of success
in a wide range of applications. In the framework of SVM,
each sample belongs to either one class or the other. This
requirement, however, makes it difficult to apply SVM to the
applications where the data exhibit partial or unclear class
memberships. To address this problem, this paper reformulates
the standard SVM to be a new learning machine that is capable
of dealing with binary (or hard) as well as real-valued (or soft)
class memberships. The new machine, which is named as Soft
SVM (S SVM), has been integrated into a classification-based
video object extraction approach, and the experimental results
demonstrate the effectiveness of the new approach.

Index Terms— Support Vector Machines (SVM), fuzzy class
memberships, soft SVM, video object extraction.

I. INTRODUCTION

Support Vector Machines (SVM) is a state-of-the-art learn-
ing machine based on the structural risk minimization induc-
tion principle [1]. In recent years, SVM has been extensively
used as a classification tool and has found a great deal of
success in a wide range of applications including pattern
recognition [2] [3], communications [4] [5], and image/video
analysis [6] [7].

Despite its superior performance in solving many classi-
fication problems, SVM is yet limited to crisp classification
scenario where each sample falls into either one class or the
other without ambiguity. However, there are situations where
the collected samples exhibit partial or unclear membership
as they may belong to different classes by different degrees.
As a matter of fact, ambiguous membership is a typical
problem for a large number of applications such as climatic
prediction [8], soil classification [9], remote sensing [10],
ecological modeling [11] and etc., where soft classification
can capture the fuzzy nature of the data better than hard clas-
sification. Unfortunately, SVM lacks this ability. To address
this problem, Fuzzy SVM (FSVM) has been developed [12],
which associates each labeled training sample with a fuzzy
membership si and employ si to weigh the corresponding
penalty term in the objective function. FSVM extends the
horizon of SVM, but the information embedded in the fuzzy
membership is missing when the corresponding sample is
correctly classified because the penalty term is non-zero only
when misclassification occurs. In this paper, we propose Soft
SVM (S SVM) which takes account of the real-valued mem-

bership no matter whether the samples are classified correctly
or not. To test the effectiveness of S SVM, we employ S SVM
as the classifier in a classification-based video object extraction
approach. S SVM shows its advantage over both standard
SVM and FSVM by achieving higher classification accuracy.

The rest of the paper is organized as follows. First a brief
introduction of SVM is given in Section II. Then the training
mechanism of the S SVM is reformulated in Section III.
Section IV presents a classification-based approach for video
object extraction where S SVM is employed as the classifier. It
also explains how to define the real-valued membership in this
specific application. Experimental results are given in Section
V which is followed by conclusions in Section VI.

II. SUPPORT VECTOR MACHINES

To facilitate the discussion, we only give a brief review
of SVM in this section and refer the details to [13] [14].
Consider N training samples: {x1, y1}, . . . , {xN , yN}, where
xi = [ xi,1 xi,2 . . . xi,k ]T is a k-dimensional feature vector
representing the ith training sample, and yi ∈ {−1, 1} is the
class label of xi. A hyperplane in the feature space can be
described by the equation wT x + b = 0, where w ∈ Rk

and b is a scalar. The signed distance di from a point xi

in the feature space to the hyperplane is di = wT xi+b
‖w‖ .

When the training samples are linearly separable, SVM yields
the optimal hyperplane that separates two classes with no
training error, and maximizes the minimum value of |di|. It
is easy to find that the parameter pair (w, b) corresponding
to the optimal hyperplane is the solution to the following
optimization problem:

minimize : L(w) = 1
2 ‖w‖2

subject to : yi

(
wT xi + b

) ≥ 1, i = 1, ..., N. (1)

For linearly nonseparable cases, there is no such a hyperplane
that is able to classify every training sample correctly. How-
ever the optimization idea can be generalized by introducing
the concept of soft margin. The optimization problem thus
becomes:

minimize : L(w, ξi) = 1
2 ‖w‖2 + C

∑N
i=1 ξi

subject to : yi

(
wT xi + b

) ≥ 1 − ξi, i = 1, . . . N, (2)

where ξi are called slack variables that are related to the soft
margin, and C is the tuning parameter used to balance the
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margin and the training error. Both optimization problems (1)
and (2) can be solved by introducing the Lagrange multipliers
αi that transforms them to a quadratic programming problem:

maximize:
∑N

i=1 αi − 1
2

∑N
i=1

∑N
j=1 αiαjyiyjx

T
i xj

subject to:
∑N

i=1 yiαi = 0, 0 ≤ αi ≤ C. (3)

III. SOFT SVM

A. Introduction of Real-Valued Memberships

Again suppose we are given N training samples
{(x1, y1), ... , (xN , yN )}, where xi ∈ Rk are the input vectors
and yi ∈ [−1 1] are their corresponding real-valued mem-
berships. yi can be considered as a slider moving between -1
and 1. The more it slides toward 1 (-1) the more degrees xi

exhibits to be a member of class 1 (-1), or the more certain
we are about the fact xi belongs to class 1 (-1). When the
membership stays in the middle (yi = 0), we have absolutely
no idea which class the sample xi comes from. In order to fit
into the notations of standard SVM, we decompose yi into two
parameters as yi = ỹiλi, where ỹi = Sign(yi) is the binary
class label and λi = |yi| is the certainty measure.

B. Formulation of Soft SVM

In this section, we derives the detailed formulation of
S SVM. We start with the simple case of linearly separable
sets, and then extend it to the linearly nonseparable case which
is more general in reality.

1) Linearly separable case: Let us first consider a very
simple example. Assume we have only two training samples
x1 and x2. Also assume that x1 comes from class 1 with full
membership (y1 = 1) while x2 from class -1 with much less
certainty, say, y2 = −0.2. Considering that the uncertainties
of the class labels are caused by the overlapping of the
data near the separating boundary, the optimal hyperplane is
expected to move toward the point x2 to reflect the unbalanced
memberships rather than stand right in the middle between x1

and x2 as yielded by the standard SVM. To do so, we relax
the constraints as

ỹi

(
wT xi + b

) ≥ λi (4)

such that the samples with smaller λi stay closer to the
decision hyperplane. As a result, the optimal hyperplane of
S SVM is the solution to the following optimization problem:

minimize : L(w) = 1
2 ‖w‖2

subject to : ỹi

(
wT xi + b

) ≥ λi, i = 1, ..., N. (5)

2) Linearly nonseparable case: In analogy to what SVM
does to deal with the training error occurred in the linearly
nonseparable case, we introduce the non-negative variables ξi,
which satisfy

ỹi

(
wT xi + b

) ≥ λi − ξi, (6)

to penalize the objective function when the training samples
xi are misclassified. However, as mentioned before, the state-
ments “xi belongs to ỹi” have different confidence levels
measured by λi and we should worry more about the misclas-
sification of the samples with higher λi. Thus in our S SVM
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Fig. 1. The comparisons of FSVM (SVM) and FS SVM (Soft SVM).

the error term ξi is further modified to λiξi to differentiate the
penalty to the error, which yields the following formulation:

minimize : L(w, ξi) = 1
2 ‖w‖2 + C

∑N
i=1 λiξi,

subject to : ỹi

(
wT xi + b

) ≥ λi − ξi. (7)

It is easy to find that the minimization problem of SVM
which is described in (2) is equivalent to

minimize :
1
2
‖ω‖2 + C

N∑
i=1

FSVM

(
yif(xi)

)
, (8)

where f(xi) = wT xi + b; FSVM(u) = 0 if u ≥ 1 and 1 − u
if u ≤ 1, whose plot is displayed in Fig. 1(a). Similarly, the
optimization function (7) is equivalent to:

minimize :
1
2
‖ω‖2 + C

N∑
i=1

FS SVM

(
λi, ỹif(xi)

)
, (9)

where FS SVM(u1, u2) = 0 if u2 ≥ u1 and u1(u1 − u2) if
u2 < u1, as shown in Fig. 1(b).

As one can see from Fig. 1(a) and 1(b), all the training
samples are treated equally when λi = 1 and the Soft SVM is
reduced to the standard SVM. Another extreme is λi = 0. In
that case, the penalty term FSSVM(0, u2) would always be zero
no matter it is classified as class 1 or -1. As a result the sample
xi would have no contribution to the decision boundary, which
makes perfect sense since λi = 0 implies total uncertainty
about which class xi belongs to.

Similar to the standard SVM, the optimization problem of
S SVM can be transformed into the dual problem

maximize:
∑N

i=1 λiαi − 1
2

∑N
i=1

∑N
j=1 αiαj ỹiỹjx

T
i xj

subject to:
∑N

i=1 ỹiαi = 0, 0 ≤ αi ≤ λiC. (10)

Then the optimal w̄ of Eq. (7) is the linear combination of xi

as w̄ =
∑N

i=1 ᾱiỹixi, where ᾱi denotes the optimal point of
Eq. (10). As for the optimal b, it can be determined from the
following Kuhn-Tucker conditions:

ᾱi

(
ỹi(w̄T xi + b̄) − λi + ξ̄i

)
= 0, i = 1, . . . , N, (11)

(λiC − ᾱi)ξ̄i = 0, i = 1, . . . , N. (12)

From the derivation above, one can see that the dual problem
of S SVM is a quadratic problem similar to that of the standard
SVM. The computational load of the new approach thus stays
the same.
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(a)

(b)

Fig. 2. An overview of the proposed approach. (a) The training phase. (b)
The extraction phase.

IV. VIDEO OBJECT EXTRACTION: AN APPLICATION OF

SOFT SVM

As a prerequisite of the emerging content-based video tech-
nologies, video object (VO) extraction is a very important yet
challenging task. Recently the classification-based approaches
which handle the VO extraction directly as a classification
problem have been proposed [15]–[17]. For the remainder of
this paper, we will integrate the proposed S SVM into the
VO extraction method described in [16] [17] and present the
experimental results which demonstrate the effectiveness of
this new learning machine.

A. Review of the VO Extraction Approach

The basic idea of [16] [17] is to decompose each frame into
small blocks, and to use the learning machines such as SVM
to classify them as foreground or background. The object of
interest is then formed by all the foreground blocks. Fig. 2
presents an overview of the this scheme. As one can see, it
consists of two phases: the training phase and the extraction
phase. The training phase begins with dividing the first frame,
chosen as the training frame, into blocks that are defined as
object blocks or background blocks depending on which class
the pixel at the center of the block belongs to. Every centering
pixel as well as every block is represented by the local
and neighboring features and through a learning procedure
a decision function that separates the object and background
is obtained. In the extraction phase, each subsequent frame
is also divided into blocks, and for each block the decision
function is evaluated to decide whether the centering pixel
belongs to the object or not, which consequently determine the
class label of the block. Then the tracking mask is formed by
all the identified object blocks, at which point the resolution of
object’s boundary is as large as the size of the block. Finally,
the pixel-wise accuracy is obtained by applying a pyramid
boundary refining algorithm [16] [17] which refines the object
boundary in an efficient and scalable manner.

B. Generating the real-valued membership

Recall that in the training phase the training frame is
divided into blocks and each of them is labeled depending
on which class the centering pixels belong to. It has been
observed during the experiments that the labeling job is not as
easy when the blocks lay around the object boundary which
usually exhibits a gradual rather than a clean-cut transition.

In other words, there are some uncertainties associated with
these boundary blocks, i.e., they can not be fully assigned to
either one of the two classes, where S SVM comes to play an
important role.

Now the question is how to generate the real-valued mem-
bership yi ∈ [−1 1] for a given block i. For this specific
application, we utilize the normalized difference between the
number of object and background pixels contained in the block
as the measure. More specifically, for the L × M block size,

yi =
# of object pixels − # of background pixels

L × M
. (13)

When the block locates fully inside (or outside) the object,
we have yi = 1 (or yi = −1) showing no labeling ambiguity
at all. When the block contains equal number of object and
background pixels, yi = 0 which indicates the maximum
uncertainty. In other cases, yi varies between -1 and 1.

V. EXPERIMENTAL RESULTS

Experiments are conducted on some standard MPEG-4 test
video sequences, and the performance is compared among
SVM, the proposed S SVM and the Fuzzy SVM proposed
in [12] whose objective function is

minimize : 1
2 ‖w‖2 + C

∑N
i=1 λiξi,

subject to : ỹi

(
wT xi + b

) ≥ 1 − ξi, (14)

where λi replaces the notation si used in [12].
Fig. 3 shows the tracking results of Akiyo, a typical head-

and-shoulder type of sequence. Evidentally the object tracked
by using S SVM is more complete and accurate. The major
difference lies around the boundary area of the object where
SVM yields more misclassifications. Another test sequence is
Mom and Daughter, which exhibits heterogenous spatial and
motion characteristics in comparison with Akiyo. The Radial
Basis Function (RBF) is employed as the kernel function, and
again S SVM yields more satisfactory results (Fig. 4).

To assess the performance quantitatively and objectively, we
calculate the classification errors yielded by SVM, S SVM
and FSVM, which are plotted verses the number of frames
as the dashed, dotted and solid lines respectively in Fig.
5. As one can see, the solid line is below the other two
lines throughout the whole sequences showing that S SVM
achieves the highest classification accuracy. We want to point
out that the absolute difference between the lines does not fully
demonstrate how powerful S SVM is considering the fact that
SVM and FSVM have already delivered very low classification
errors and not leaved much room for improvement. When we
compute the relative difference, which is ESV M−ES SV M

ESV M
and

EF SV M−ES SV M

EF SV M
where E(·) denotes the classification errors

yielded by the corresponding machine, S SVM significantly
outperforms SVM and FSVM by 31.3% and 11.0% in average
with the biggest improvement 51.7% and 39.7%, respectively.

It also should be noted that for the Mom and Daughter
sequence the dashed line and the dotted line coincide since
FSVM and SVM yield the same decision function. This is not
surprising because by using the RBF kernel, zero training error
is attainable, and all the penalty terms ξi in Eq. (14) becomes
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(a) (b)

Fig. 3. The tracking results of Akiyo using (a) SVM and (b) S SVM.

(a) (b)

Fig. 4. The tracking results of Mom and Daughter using (a) SVM and (b) S SVM.
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Fig. 5. The comparison of the classification accuracy among SVM, FSVM and S SVM. (a) Akiyo sequence. (b) Mom and Daughter sequence.

zero which flattens the only effect of different λi. Nevertheless,
FSVM delivers the second best performance among the three
machines, which support our motivation that the fuzzy feature
of data, if there is any, should be taken into consideration when
the machine is trained.

VI. CONCLUSIONS

SVM is a powerful learning machine and has drawn a lot of
attention in recent years. Under the framework of SVM, each
training point belongs to one class or the other. However, in
many classification problems, the collected samples do not
exhibit a clean-cut membership. Instead they may belong to
different classes by different degrees or different certainties.
In this paper, we present S SVM, a reformulated version
of SVM which can deal with both binary and real-valued
class memberships without increasing the computational cost.
Classification-based video object extraction, a novel applica-
tion, is also presented in this work as an example showing
that S SVM captures better the fuzzy nature of the gradual
transition between two classes than the standard SVM.
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