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ABSTRACT
This paper presents a novel representation for auditory
environments that can be used for classifying events of
interest, such as speech, cars, etc., and potentially used to
classify the environments themselves. We propose a novel
discriminative framework that is based on the audio
epitome, an audio extension of the image representation
developed by Jojic et al. [3]. We also develop an
informative patch sampling procedure to train the
epitomes. This procedure reduces the computational
complexity and increases the quality of the epitome. For
classification, the training data is used to learn
distributions over the epitomes to model the different
classes; the distributions for new inputs are then compared
to these models. On a task of distinguishing between 4
auditory classes in the context of environmental sounds
(car, speech, birds, utensils), our method outperforms the
conventional approaches of nearest neighbor and mixture
of Gaussians on three out of the four classes.

1. INTRODUCTION

In this work, we propose a new representation and
method for auditory perception that has the potential to
cover a broad range of tasks, from classifying and
segmenting sound objects to representing and classifying
auditory environments. The core representation is an
epitome, a model introduced by Jojic et al. [3] for the
image domain. The basic idea was to find an optimal
“palette” from which patches of various sizes could be
drawn in order to reconstruct a full image. We apply this
idea to the log spectrogram and log melgram with one-
dimensional patches and find an optimal spectral palette
from which we can take pieces to explain our input
sequence. This epitome will have sound elements of a
variety of timescales that it finds most appropriate to
represent what it observed in the input sequence. For
instance, if the input contained the relatively long sounds
of cars passing by and also some impulsive sounds, like
car doors opening and closing, these would both be stored
as chunks of sound in the same epitome – without having
to change the model parameters or training procedure.

Furthermore, the epitome is learned without specifying
the target patterns to be classified, and attempts to learn a

model of all representative sounds in the environment. To
aid in this process, we have developed a new training
procedure for the epitome that efficiently allows us to
maximize the epitome’s coverage of the different sounds.
Once we have trained the epitome, we learn distributions
over the epitome for each target class, which could also be
applied to entire auditory environments. In other words,
we treat the epitome as a continuous “alphabet” that
represents the space of all possible sounds, and build
models of our target classes in terms of this alphabet. We
can then classify new patches and do segmentation based
on these models.

2. PRIOR WORK

Thus far, there have been a variety of different
approaches to recognizing audio classes and classifying
auditory scenes. Most of the sound recognition work has
focused on particular classes such as speech detection, and
the best methods involve specialized methods and features
that take advantage of the target class. For example, Zhang
and Kuo [5] have described heuristics for audio data
annotation. The heuristics they have chosen are highly
dependent on the target classes, thus their approach cannot
be extended to incorporate other more general classes.
There have been discriminative approaches such as [2],
where support vector machines were used for general
audio segmentation and retrieval. This approach is
promising but is restricted in the sense that you need to
know the exact classes of sounds that you want to
detect/recognize in advance at the time of training.
Similarly, there are approaches based on HMMs [1],[4].
These approaches suffer from the same problem of
spending all their resources in modeling the target classes
(assumed to be known beforehand), thus extending these
systems to a new class is not trivial. Finally, these
methods were tested on databases where the sounds
appeared in isolation, which is not a valid model of real-
world situations.

We believe that our approach will overcome some of
these limitations, since we learn a representation of all
sounds in the environment at once with the epitome and
then train classifiers based on this representation. In the
following sections, we detail the epitomic representation,
describe how we use it for classification, and show a
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variety of results from our preliminary experiments on
segmenting and classifying sounds.

3. OUR APPROACH

Our approach can be divided into two parts: first, learning
the audio epitome itself, and second, using the epitome to
build classifiers; both are described in the subsections
below.

3.1. Audio Epitomes

Figure 1: The audio epitome representation.

The basic principle of the audio epitome is shown in
Figure 1 above: the input sequence is a log magnitude
spectrogram, and the epitome is a “palette” for such
spectrograms. Observed patches in the input sequence,

kZ , are explained by selecting the patch from the epitome

e with the appropriate transformation (i.e., offset) kT , i.e.,

where in the epitome the patch comes from. The
probability of observing kZ given this epitome and offset

is a product of Gaussians over pixels as below:
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where the i ’s are for the iteration over the individual
frequency-time values or “pixels” of the spectrogram.
Jojic et al. [3] describe the mechanisms by which to learn
this epitome from an input sequence and to do inference,
i.e., to find ( | , )k kP T Z e from an input patch.

The training procedure requires first selecting a fixed
number of patches from random positions in the image.
Each patch is then averaged in to all possible offsets kT in

the epitome, but weighted by how well it fits that point,
i.e., ( | , )k kP Z T e . The idea is that if we select enough

patches then we should expect a reasonable coverage of
the image. In audio, we face two problems. First, the
spectrograms can be very long, thus requiring a very large
number of patches before adequate coverage is achieved.
Second, there is often a lot of redundancy in the data in
terms of repeated sounds. We need a training procedure
that takes advantage of this structure, as we describe in the
following subsection.

3.1.1. Informative Patch Sampling
Rather then selecting the patches randomly, our
informative patch sampling approach aims to maximize
coverage of the input spectrogram/melgram with as few
patches as possible. The idea is to start with a uniform
probability of selecting any patch and then updating the
probability in every round based on the patches selected.
Essentially, the patches similar to the patches selected so
far are assigned a lower probability of selection. The
details are shown in figure 2.

Figure 2: Informative patch selection algorithm.

Once we have selected the patches representative of the
input audio signal, we can train the epitome. In our
implementation, all the patches used for training the
epitome are of equal size (15 frames, or 0.25 seconds
long). Note that in all our experiments the audio is
sampled at 16 kHz; we use an FFT framesize of 512
samples with an overlap of 256 samples, and 20 mel-
frequency bins for the melgram. We use the EM algorithm
to train epitomes as described in [3]. One major difference
is that we do epitomic analysis only in 1-D. Specifically;
the patches we use are always the full height of the
spectrogram/melgram, as opposed to the patches of
varying width and height used in image epitomes.
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Figure 3: Spectrogram of the toy sequence showing
repeated sounds.

Figure 3 shows a toy sequence which exhibits the kind of
repetition we expect in natural sequences. It was collected
in an office environment, and consists of repeating sounds
of different objects being hit, speech, etc. From the figure

TkZk

input sequence epitome

f � Initialize Pi(k) to uniform probability for all
positions k in the Spectrogram

� For n = 1 to Num of Patches
o Sample a position t from Pn. The

selected patch:
pn=spectrogram (: , t : t + patch_size)

o For all positions k in the input
spectrogram compute:
Err(k) = (spec(:, t : t + patch_size) – pn)2

Pn+1(k) = Pn(k) * Err(k)
o Pn+1(k) = Pn+1(k) / sum(Pn+1(k))
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we can see not only the repetition but also a large amount
of silence/background noise. If we randomly select
patches, we will end up with mostly background patches
and will have to select quite a few before we cover the
whole spectrogram. Figure 4 shows epitomes trained from
this sequence via both approaches. Figure 4 (left) is the
epitome generated using random samples and Figure 4
(right) is the epitome generated using the same number of
patches but now using our informative sampling scheme.
Note that with our scheme, all of the individual sound
elements from the input sequence have been captured, as
opposed to the random sampling approach.

Figure 4: Epitomes learned using random (left) and
informative (right) patch sampling.

3.1.2. Classification Using the Epitome
As we have shown, the learned epitome from an input
sequence is a palette representing all the sound in that
sequence. We now want to explore how to use this
representation for classification. Since we expect
different classes will be represented by patches from
different parts of the epitome, our strategy is to look at the
distribution of transformations kT given a class c of

interest, i.e. ( | , )kP T c e , and use this to represent the class.

We can then classify a new patch by looking at how its
distribution compares to those of the target classes.

In more detail, consider a series of examples from a
target class that we would like to detect, e.g. a bird chirp.
We first extract all possible patches of length 1-15 frames.
Next we look at the most likely transformations from the
epitome corresponding to each patch extracted from the
given audio, i.e., max ( | , )k

k
P T c e , and then aggregate

these to form the histogram for ( | , )kP T c e .

Figure 5 shows two example classes and the
corresponding distributions ( | , )kP T c e . Figure 5 (left)

corresponds to bird chirps and as the histogram suggests,
most of the audio patches comes from only 4 positions in
epitome. Note that this distribution is very different from
the distribution that arises due to the acoustic event of cars
passing by (Figure 5, right). Note that these distributions
can be learned using very few examples for two reasons:
first, we generate many patches from each example, and
second, because the epitome has already compressed the
input space into an optimal palette, and thus even a small
number of examples should highlight the regions of the

epitome that are assigned to explaining the class of
interest.

Given a test audio segment to classify, we first estimate
( | , )kP T c e using all the patches of length 1-15 from the

test segment. We then seek the class ĉ whose distribution
best matches this sample distribution over all classes i in
terms of the KL-divergence:

ˆ min ( ( | , ) || ( | , ))i
k k

i
c D P T c e P T c e�

Figure 5: Distribution over transformations T for bird
chirps (left) and cars (right)

Finally, though we have only used this framework to
recognize individual sounds in our experiments, the
method can also be used to model and recognize auditory
environment via these distributions. In preliminary
experiments, we have achieved good results on such tasks,
and will report on this in a later paper.

4. EXPERIMENTS AND RESULTS

We first performed a set of experiments to compare the
epitomic training using the informative patch selection
with the training using random patch selection. For these
experiments, we used the spectrogram shown in the figure
3. Figure 6 compares the likelihood of the input
spectrogram given the epitomes trained using both the
methods while varying the number of patches used for
training. The higher likelihood corresponds to a better
explanation of the input signal using the epitome. We
averaged over 10 runs for each point in the curve. We can
see that the epitome using the informative sampling always
explains the input better than the epitome trained using
random sampling. The difference is more prominent when
the number of patches is small. Naturally, as the number of
patches goes to infinity the curves will meet.

Next, we demonstrate speech detection on an outdoor
sequence consisting of speech with significant background
noise from nearby cars. We generated a 1 minute long
epitome using 8 minutes of data. The speech class was
trained as described in 3.1.2 using only 5 labeled examples
of speech. Figure 7 shows the result of applying speech
detection to a 10 second long audio sequence. The
detector does a good job of isolating speech segments
from the non-speech segments in very significant noise
(around -10dB SSNR; this and other data can be heard at
http://research.microsoft.com/~sumitb/ae ). Note that there
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is too much background noise for any intensity/frequency
band based speech detector to work well.

Figure 6: Evidence vs. number of training patches.

Figure 7: Speech detection example.

For the final evaluation, we collected audio data in 3
environments: a kitchen, parking lot, and a sidewalk along
a busy street. On this data, we tried the task of recognizing
four different acoustic classes: speech, cars passing by,
kitchen utensils, and bird chirps. We segmented 22
examples of speech, 17 examples of cars, 29 examples of
utensil sounds, and 24 examples of bird-chirps.
Furthermore, there were 30 audio segments that contained
none of the mentioned acoustic classes. We used the log
mel-gram as our feature space and compared our approach
with a nearest-neighbor (NN) classifier and a Gaussian
Mixture Model (GMM) (both trained on individual feature
frames; for the GMM the number of components were
1/10 the number of training frames, around 50 per class).
For the non-epitome models, each frame was first
classified using the NN or GMM, and then voting was
used to decide the class-label for the segment. Note that
training the epitome (which was used for all classes) took
the same time as it took to train the GMM for each class.
Table 1 compares the best performance obtained by each
method using 10 samples per class for training.

Table 1: Classifier performance comparison.

Epitome
Pd Pfa

Nearest-N
Pd Pfa

Mix of G
Pd Pfa

Speech 0.90 0.10 0.86 0.09 0.93 0.28
Cars 0.94 0.02 0.94 0.01 1.00 0.09
Utensils 0.94 0.12 0.84 0.21 0.82 0.31
Bird Chirp 0.79 0.31 0.94 0.11 0.89 0.05

These numbers were obtained by averaging over 25 runs
with a random training/testing split on every run. The
proposed method outperforms both the nearest neighbor
and the mixture of Gaussian in 2 out of the 4 cases. In one
of the other 2 cases (cars), it is as good as the best
performing method.

Finally, in Figure 8 we show the performance with
increasing training data on the task of recognizing utensils.
We can again see that the classification using the epitome
is significantly better, especially when the amount of
training data is small.

0 2 4 6 8 1 0 1 2
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

N u m b e r o f s a m p le s p e r c la s s u s e d in t ra in in g
E

rr
or

R
at

e

E p i t o m e

N e a re s t N e ig h b o r
M ix t u re o f G a u s s ia n

Figure 8: Error vs. number of training examples.

5. CONCLUSIONS AND FUTURE WORK

We have described a new representation for modeling
audio and recognizing target classes based on the audio
version of the epitome. In our future work, we plan to
apply our framework to auditory environment
classification and clustering.
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