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ABSTRACT

Most prior work on semisupervised clustering/mixture model-
ing with given class constraints assumes the number of classes is
known, with each learned cluster assumed to be a class and, hence,
subject to the given instance-level constraints. When the number
of classes is incorrectly assumed and/or when the “one-cluster-per-
class” assumption is not valid, the use of constraint information in
these methods may actually be deleterious to learning the ground-
truth data groups. In this work we extend semisupervised learning
with constraints 1) to allow allocation of multiple mixture com-
ponents to individual classes and 2) to estimate both the number
of components/clusters and, leveraging the constraint information,
the number of classes present in the data. For several real-world
data sets, our method is shown to correctly estimate the number of
classes and to give a favorable comparison with the recent mixture
modeling approach of Shental et al.

1. INTRODUCTION

The objective of unsupervised clustering is to extract the hidden
structure in a given data set. Among various clustering meth-
ods, mixture modeling is a very important one, often performing
better than the hard-partitional clustering algorithms such as K-
means. However, there are significant challenges associated with
mixture modeling, including (poor) local maxima of learning, how
to choose the parametric form of the mixture component densities,
and how to choose the number of components/clusters in the so-
lution1. While there are many model selection approaches, there
is as yet no consensus on the proper choice for the case of limited
data.

In recent years, the utility of “side information” in clustering
– to help avoid poor local optima and to learn the clustering dis-
tortion metric [1] or, equivalently, the form of the mixture com-
ponent densities [2] – has been investigated. Early work in this
area, known broadly as semisupervised learning e.g. [3], assumed
the existence of class labels for some of the data samples. A less
restrictive form of “side information”, applicable in some situa-
tions where label information is inaccessible or inappropriate, is
pairwise sample constraints – i.e., an indication that a given pair
of samples does belong to the same group (a must-link (ML) con-
straint) or does not belong to the same group (a cannot-link (CL)

This work was supported by National Science Foundation grant NSF
IIS-0082214.

1In the sequel we use the terminology ‘components’ and ‘clusters’ in-
terchangeably.

constraint). Note that this form of side information does not ex-
plicitly specify the class label for any data samples, nor does it
necessarily even indicate how many classes are involved in the
problem2. Moreover, whereas a labeled set of samples entails class
constraints between all pairs of samples in the set, a set of samples,
each possessing some constraints, does not, in general, determine
labels for any of the samples. Non-exhaustively, we can identify
two general sources/scenarios where constraints may be the side
information of choice:
1. Domain knowledge, including spatial information in images,
temporal continuity in video, and some other prior knowledge. For
example, pixels near an image border are likely to represent image
background. This can be expressed as must-link constraints for
pairs of pixels near the border and cannot-links for (border,center-
of-field) pixel pairs.
2. Interactive, on-line databases: here, users/experts are solicited
to provide supervision information for records in the database.
Even supposing that such users provide category labels (as op-
posed to constraints) for a subset of examples, individual users
may not conform to a common convention for class names/labels
or even agree on the number of classes. In this situation, the indi-
vidual users’ labeled examples cannot be pooled in a simple way
to form an aggregate semisupervised data set; however, each user’s
labeled instances entail must-link and cannot-link constraints that
are reasonably pooled across all users. Moreover, instead of infer-
ring constraints from user-supplied labels, constraints on pairs of
examples may be directly elicited from users.
Prior Work on Learning with Instance-Level Constraints
Both ML and CL constraints are considered in the modified K-
means algorithm in [4]. This method minimizes a hard clustering
distortion, but while ensuring that no constraints are violated. In
this approach, the data is first partitioned into chunklets, obtained
by applying transitive closure to the ML constraints, i.e. chunklets
consist of disjoint data subsets constrained to belong to the same
class, as entailed by the specified ML constraints. Then a variant
of K-means is applied, one satisfying the ML and CL constraints,
with each individual cluster treated as a distinct class. The “nearest
neighbor” step in this method involves iterative sequential assign-
ment of each chunklet to the nearest cluster (class) consistent with
the chunklet’s CL constraints. In [5], pairwise constraints were
introduced within a graph-based clustering framework, applied
to image segmentation. First, constraints were obtained based

2At the same time, constraints do provide information about the num-
ber of classes that may be present – this information will be leveraged for
estimating the number of classes in our work.
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on grouping cues from the image. Next, these constraints were
smoothed in order to propagate them spatially. The smoothed con-
straints were incorporated into a normalized cuts clustering objec-
tive. The use of constraints was found to substantially improve
segmentation results even though only ML constraints were con-
sidered. Klein et al. [6] proposed a hierarchical, complete-linkage
agglomerative clustering algorithm with integrated metric learn-
ing. Here, the distance measure was modified based on ML con-
straints, with CL constraints enforced during the cluster merging.
Metric learning has been considered in, e.g.,[1] and [7]. Our ap-
proach, through its use of multiple components per class, effec-
tively performs a type of “local” metric learning. Constraint in-
formation has also been integrated within the learning of “soft”
clustering solutions, i.e. Gaussian mixture models [2]. While this
work is closely related to ours, there are key differences which
will be shortly discussed. The approach in [2] was extended in [8]
to consider soft constraints. As indicated later, our approach also
incorporates constraints in a soft fashion.
Clusters and Classes
Our method learns a mixture model for the data with individual
clusters capturing homogeneous groups of points. However, the
clusters are not necessarily treated as classes, individually subject
to the given instance-level constraints. Rather, we allow classes to
be composed of one or more clusters, with the allocation of clus-
ters to classes chosen to best satisfy the given (class) constraints.
All previous works have assumed one cluster per class. The po-
tential difficulties stemming from this assumption are illustrated
in Fig. 1 for the method from [2]. For this data set, one of the two
classes consists of two ground-truth clusters, with the other class
a singleton cluster. [2] assumes one cluster per class and requires
specifying the number of classes. This method learns general co-
variances for individual clusters so that the cluster shape can be
adapted to better satisfy the given constraints. If this method as-
sumes 2 classes (Fig. 1a), it has difficulty capturing 2 ground truth
components within one of its learned classes/clusters. On the other
hand, if 3 classes are assumed (Fig. 1b), ML constraints within one
of the ground truth classes (between 2 ground truth components)
make it difficult to capture the true cluster structure. The method
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Fig. 1. 2-D data from 3 components but only 2 classes, with given
ML and CL constraints. Mixture model solutions for [2] assuming
2 classes (a)) and 3 classes (b)).

we propose here accurately learns both the clusters and classes for
this example, as well as for more complex mixture distributions.

In addition to assuming one cluster per class, most prior works
assume the number of classes (same as clusters, in these approaches)

is known. In our method we do not assume either the cluster num-
ber or class number are known. To estimate the number of clusters,
we use a model selection criterion, i.e. the Bayesian Information
Criterion [9]. For a given number of clusters, the number of classes
is automatically estimated as a byproduct of the minimization of
our learning objective function. This will be seen shortly. There
are several factors which affect the ability of our method to accu-
rately estimate the number of classes. An incorrect class number
estimate may stem from inaccuracy in model assumptions (a mix-
ture with known parametric density forms), local optima of learn-
ing, limited data, or inaccuracy in the estimation of the number
of mixture components. Somewhat unrealistically, let us ignore
any inaccuracy attributable to the above factors, supposing that the
learning and model selection capture the ground truth mixture used
to generate the given data. In this case, identifying the classes
(and their number) boils down to identifying to which class each
mixture component belongs. Whether or not this can be uniquely
determined depends on both the consistency and sufficiency of the
supplied constraint information. We will suppose the given con-
straints are logically consistent. Several different “constraint suf-
ficiency” cases are show in Fig. 2. In Fig. 2a, the constraints are
sufficient to uniquely discern the classes, while in Fig. 2b they are
not. Even if the constraint information is in principle sufficient,
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Fig. 2. Constraint Illustration. A must-link is denoted by m, while
a cannot-link is denoted by c.

in practice there is a difficult learning problem to address in esti-
mating these classes and their component/cluster constituents. We
next develop our learning framework.

2. LEARNING FRAMEWORK

Assume a K-component mixture, the K components each belong-
ing to one of a maximum of Lm classes, where Lm ≤ K. Ex-
tra parameters are needed to describe these relations. Let βl|k
be the probability that component k is assigned to class l. Here
we have

∑Lm
l=1 βl|k = 1, k = 1, · · · , K. Note that if βl|k =

0, ∀k, then class l is not used and the number of classes, as esti-
mated by {βl|k}, is smaller than Lm. The joint data likelihood of
sample xi and class label l, given generation by component k, is
αkβl|kf(xi|θk). Based on this, the complete data log-likelihood
can now be written:

U(M, V, Θ) = −
N∑

i=1

K∑
k=1

L∑
l=1

MikVkl log
[
αkβl|kf(xi|θk)

]
,

(1)
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where M = [Mik] is the data assignment matrix with Mik = 1 if
sample xi is assigned to component k; else Mik = 0, and where
V is the component assignment matrix with Vkl = 1 if component
k is assigned to class l; else Vkl = 0. Our approach incorporates
constraints by adding a constraint penalty function to the complete
data log-likelihood. In particular, we consider the potential

U(M, V, Θ) = −
N∑

i=1

K∑
k=1

L∑
l=1

MikVkl log
[
αkβl|kf(xi|θk)

]

+
1

2

N∑
i=1

N∑
j=1

Cij

L∑
l=1

( K∑
k=1

MikVkl

)( K∑
k′=1

Mjk′Vk′l

)
D,

(2)

where

Cij =

⎧⎨
⎩

1 : cannot-link between samples xi and xj

−1 : must-link between samples xi and xj

0 : otherwise
,

(3)
and with D a positive value. Note that the penalty “softly” en-
courages constraint satisfaction, with the degree of enforcement
determined by the value of D. While hard constraint satisfaction,
as considered in [2], may be desirable in some cases, soft con-
straints are more appropriate when some constraints are unreliable
and/or when the models for individual classes are not sufficiently
powerful to satisfy all the constraints (see Fig. 1).

If one applies the Expectation-Maximization formalism to this
“penalized” complete-data log likelihood, treating M and V as
the missing data, one finds that it is intractable to compute the E-
step – this is due to the coupling of missing variables introduced
by the penalty term. Thus, in order to have a feasible algorithm
for learning the mixture model parameters, we need to invoke an
approximation.

2.1. Mean Field Approximation and Learning

It is well-known that the learning objective of the EM algorithm
for mixture models can be stated as the minimization of the free
energy F = 〈U〉 − H , with 〈U〉 the expected complete data log-
likelihood and H the entropy of the probabilistic assignments of
data to components (which are the expected missing values). For
the “penalized” likelihood in (2), this minimization can be stated
as

min
Θ,P (M,V |X)

F (U, P ) = 〈U(M, V, Θ)〉 − H(P (M, V |X )) (4)

where 〈U(M, V, Θ)〉 =
∑

{M,V } P (M, V |X )U(M, V, Θ). When
there are no constraints, V vanishes in (4) and the optimal joint
pmf P (M |X ) satisfies statistical independence of individual data
assignments, i.e., P (M |X ) =

∏N
i=1

( ∑
k MikP (Mik|xi)

)
. Un-

fortunately, when constraints are introduced, one can verify that
the optimal joint pmf P̃ (M, V |X ), minimizing (4), does not sim-
plify to a tractable form unless some approximation is applied. We
invoke a mean-field approximation as applied, e.g., in [10]. In par-
ticular, we approximate this optimal joint pmf P̃ (M, V |X ) by a
pmf that does have a tractable, factorized form, which we denote
by P 0(M, V |X ). The form of P 0(M, V |X ) is chosen to mini-
mize the new free energy:

F (U0, P ) = 〈U0(M, V )〉 − H(P (M, V |X )) (5)

where U0(M, V ) = −∑N
i=1

∑
k

∑
l MikVklEikl. The form of

the solution is a tractable Gibbs distribution due to the definition
of U0(M, V ):

P 0(M, V |X ) =
e−U0(M,V )

∑
M′,V ′

e−U0(M′,V ′)

=

N∏
i=1

( ∑
k,l

MikVkl
e−Eikl∑

k′,l′ e−Eik′l′

)

=

N∏
i=1

( ∑
k,l

MikVkl · P (Mik, Vkl|xi)
)

(6)

The parameters Eikl approximate the average interaction of MikVkl

with other assignment variables (seen from (2)). We wish to choose
the field parameters E = {Eikl, ∀i, k, l} so as to make the tractable
P 0(M, V |X ) as close as possible to the optimal, intractable joint
pmf P̃ (M, V |X ). For concision of expression, we subsequently
dropX from these pmfs. Choosing relative entropy as the criterion
with P̃ (M, V ) treated as the prior, we pose

min
E

I(P 0(M, V )||P̃ (M, V ))

= min
E

{ ∑
M,V

P 0(M, V )U(M, V, Θ) − H(P 0(M, V ))
}
.

(7)

After taking the derivative with respect to E , setting to zero, and
after some manipulation, we obtain the mean-field equations:

Eikl = − log[αkβl|kf(xi|θk)]

+ D

N∑
j=1,j �=i

Cij [〈Mjk〉 +
∑
k′ �=k

〈Mjk′Vk′l〉].
(8)

Then, the marginal posterior probabilities (factors) of P 0(M, V |X )
satisfy

〈MikVkl〉 ≡ Prob(Mik = 1, Vkl = 1|xi) ∝ e−Eikl

= αkβl|kf(xi|θk)
N∏

j=1,j �=i

e
−CijD[〈Mjk〉+ ∑

k′ �=k

〈Mjk′Vk′l〉] (9)

Since relative entropy is non-negative, we have that

F (U, P̃ ) ≤ F (U0, P 0) +
∑
M,V

P 0(M, V )[U(M, V, Θ) − U0(M, V )]

=
∑
M,V

P 0(M, V ) · U(M, V, Θ) − H(P 0(M, V )).

(10)

From (10) and (7), we see that P 0(M, V |X ) is chosen to minimize
an upper bound on the original free energy F (U, P̃ ).

We also minimize this upper bound with respect to the model
parameters. Taking the derivative of (10) with respect to the pa-
rameters and setting to zero, we obtain the necessary optimality
conditions:

αk =

∑
i

∑
l〈MikVkl〉
N

=

∑
i〈Mik〉
N

(11)

βl|k =

∑
i〈MikVkl〉∑

l′
∑

i〈MikVkl′〉 =

∑
i〈MikVkl〉∑

i〈Mik〉 (12)
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µk =

∑
i〈Mik〉xi∑

i〈Mik〉 (13)

Σk =

∑
i〈Mik〉(xi − µk)(xi − µk)T

∑
i〈Mik〉 (14)

Here we have assumed Gaussian components, i.e., {θk} = {µk, Σk}.
(9) and (11)-(14) form the basis for an iterative algorithm min-

imizing the free energy (10). Given fixed associations {〈MikVkl〉}
(and 〈Mik〉 =

∑Lm
l=1〈MikVkl〉), (11)-(14) directly specify M-

step parameter updates. Given fixed parameters, (9) specifies a
fixed point update equation for {〈MikVkl〉}. One point of caution
concerns how the updates of 〈MikVkl〉 are carried out. Updat-
ing these associations sequentially, i.e. one association at a step,
is guaranteed to descend in the free energy (10) [10]. Updating
〈MikVkl〉 ∀i, k, l in parallel according to (9) is not guaranteed to
descend. In practice, oscillations may occur if D is made too large.

3. EXPERIMENTAL RESULTS

We compared our method against [2] on several real-world data
sets from the UC Irvine repository. As in [2], the performance of
the methods was evaluated via a combined measure of purity P
and accuracy A scores, defined as follows: ρ = 2PA

P+A
, where pu-

rity (P ) measures the homogeneity of estimated classes, i.e., how
many of the estimated class points belong to a single true class, and
accuracy (A) measures how many of the true class points reside
in a single estimated class (rather than being spread over several
estimated classes). About 30% of the data points were given con-
straints. As preprocessing, standard principal component analysis
was used to reduce the dimension for the data sets Ecoli, Indian
diabetes, Ionosphere, and Breast cancer, down to the dimension
shown in Table 1. For the Ecoli data set, the original 8 classes
were merged into 3 classes. Specifically, the 6 classes with dif-
ferent membrane locations were merged into one because some
of them own too few data points to support the cluster structure.
Some comments are in order regarding the choice of D in our
method. As noted earlier, parallel updates do not guarantee con-
vergent learning. We have observed non-monotonicity of learning
iterations, just as in [10], when D is made too large. Two possible
solutions are to use sequential updates or to use parallel updates
but adopt a relatively small value of D. For these experiments
we chose the latter approach, using parallel updates and D = 2.
The results are shown in Table 1. The most important statement
to make about these results is that our method (MCGMM) cor-
rectly estimated the number of classes present, for each of these
real-world data sets. For example, for Ecoli, BIC-based model
selection yielded K = 5 and, thus, Lm = 5. However, in the
mixture solution with K = 5, as expressed by the {βl|k}, only
three classes were used. The purity-accuracy performance of our
method was the best on most data sets. One interesting observa-
tion is that tied-covariance (TC) versions of both methods often
improved the results, indicating that the data sets were too small to
support use of full covariances.

4. CONCLUSIONS

In this work, we have extended semisupervised learning with con-
straints in several respects: 1) to improve the representation of the

SGMM MCGMM
Ecoli 0.7925 0.8525,K=5

(N=336,d=5,L=3) 0.8615(TC) 0.8742(TC)
Liver disorders 0.6348 0.6946,K=2

(N=345,d=6,L=2) 0.6527(TC) 0.7221(TC)
Indian diabetes 0.6394 0.7103,K=3

(N=768,d=6,L=2) 0.6255(TC) 0.7410(TC)
Breast cancer 0.9306 0.9446,K=5

(N=683,d=4,L=2) 0.9720(TC) 0.9635(TC)
Ionosphere 0.9054 0.8884,K=3

(N=351,d=15,L=2) 0.7963(TC) 0.8041(TC)

Table 1. The results for UC Irvine data sets. “TC” means that
only one, tied covariance is used for all components. N is the
number of data points, d is the reduced dimension, L is the number
of classes, and K is the cluster number determined via the BIC
model cost.

classes by allowing multiple components per class, with compo-
nent allocation automatically determined by the learning; 2) un-
like previous approaches, our method automatically estimates the
number of classes in the data.
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