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ABSTRACT 
This paper presents a novel nonparametric likelihood ratio 
criterion for independent component analysis (ICA). This criterion 
is derived through statistical hypothesis test of independence of 
random variables. A likelihood ratio (LR) criterion is developed to 
measure the strength of independence. We accordingly estimate 
the unmixing matrix by maximizing the LR function and applied 
to transform data into independent component space. 
Conventionally, the test of independence was established 
assuming data distributions being Gaussian, which is improper to 
realize ICA. To prevent assuming Gaussianity in hypothesis 
testing, we propose a nonparametric approach where the 
distributions of random variables are calculated using kernel 
density functions and adopted for estimation of LR function. 
Finally, a new ICA is fulfilled using the nonparametric likelihood 
ratio (NLR) criterion. In the experiments, we apply the proposed 
ICA for blind source separation and speech recognition. The 
evaluation on using NLR criterion shows good performance for 
separation and recognition of speech signals. 

1. INTRODUCTION 
Independent component analysis (ICA) has been increasingly 
important and widely applied for data analysis and blind signal 
separation (BSS). Many applications were developed including 
financial data analysis, telecommunication, speech signal 
processing and medical image processing [5]. In general, ICA 
aims to find an NN ×  unmixing matrix W , which separates the 

mixed signal T
Nxx ],,[ 1 L=x  and recovers the original 

independent components T
Nss ],,[ 1 L=s . The signal x  was 

mixed via an unknown linear matrix A , sx A= . The key idea of 
estimating ICA model is to measure non-Gaussianity so as to 
attain the independence of sources [5].  Traditionally, the high-
order statistics and information-theoretic criteria were exploited to 
measure the non-Gaussianity or independence. The high-order 
statistics using absolute value of kurtosis was maximized to find 
independent components. However, kurtosis is sensitive to outlier 
data. Also, the information-theoretic criteria using negentropy, 
likelihood function and mutual information are successful for ICA 
framework. We may minimize the mutual information between the 
transformed sources. A transformation (unmixing) matrix is 
accordingly estimated to separate the mixed signals. Such 
optimization was shown to be equivalent to maximum likelihood 
and maximum negentropy principles [5]. 

In this paper, we propose a statistical approach to establish 
ICA model using the hypothesis test principle. We are testing the 
hypothesis whether the transformed set of variates is independent 
or not. The hypothesis is verified when the test statistics in a form 
of likelihood ratio exceeds the specified significant level. The 
likelihood ratio of independence to dependence hypotheses serves 
as an objective function to find the unmixing matrix. We 
maximize the LR function, or equivalently the confidence for 

independence, to realize ICA. In traditional test of independence 
[1], the data distributions were assumed to be Gaussian, which is 
undesirable for ICA problem. Instead of assuming Gaussian, we 
present a nonparametric approach where the kernel density 
functions are adopted to approximate data distributions. A new 
nonparametric likelihood ratio criterion is derived to build the 
ICA model. In this study, we carry out the nonparametric 
likelihood ratio for blind separation of speech and music signals. 
The proposed approach is also applied to clustering of speech 
signals for hidden Markov modeling. We achieve good 
performance in terms of signal-to-interference ratios and speech 
recognition rates. 

2. TEST OF INDEPENDENCE 
We are interested in resolving ICA via test of independence for 
the transformed data xy W= . In [1], Anderson presented the 
criterion for testing independence of the components of 

T
Nyy ],,[ 1 L=y . We are verifying the null hypothesis that the 

components Nyyy ,,, 21 L  are mutually independent against the 

alternative hypothesis that components are dependent. The null 
and alternative hypotheses are stated as 

0H : Nyyy ,,, 21 L  are mutually independent. 

1H : Nyyy ,,, 21 L  are not mutually independent. 

Assuming that y  is a N  dimensional Gaussian density with 

unknown mean vector T
N ],,[ 1 µµµ L=  and covariance matrix 

Σ , the null hypothesis is equivalent to see the covariance between 
vectors iy  and jy

0H : jiyyE jjiiij ≠=−−= allfor0)})({(2 µµσ .      (1) 

Namely, when any two distinct components }),,{( jiyy ji ≠  are 

uncorrelated, Nyyy ,,, 21 L  are mutually independent. This 

property holds only for Gaussian distributions. Under 0H , the 

covariance matrix Σ  becomes DΣ , which is a diagonal matrix 

with diagonal elements },,1,{ 2 Niii L=σ . Then, the optimal 

solution to this hypothesis testing is to determine the ratio of 
likelihoods of null hypothesis )( 0Hp y  to alternative hypothesis 

)( 0Hp y  as 
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By substituting Gaussian densities, the likelihood ratio turns out 
to be 
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where Σ̂  is the sample covariance matrix calculated from M

samples },,,{ 21 Myyy L  and 2ˆ iiσ  is the ith diagonal component 

of Σ̂ . With a level of significance α , we can determine the 
threshold αλ . The null hypothesis 0H  is verified when λ  has 

the value in acceptance region αλλ ≥ . Basically, the likelihood 

ratio λ  measures the confidence for null hypothesis, or 
equivalently the independence for Nyyy ,,, 21 L . The larger the 

likelihood ratio is, the more likely the components are mutually 
independent. In this study, we highlight on developing the 
likelihood ratio criterion for solving ICA problem. Our goal is to 
estimate the unmixing matrix W  according to the theoretical 
evidence originated from the test of independence [1]. We are 
motivated to estimate the most likely unmixing matrix with the 
largest likelihood ratio 

)(maxargLR WW
W

λ= .                          (4) 

Matrix LRW  is able to optimally separate the observed signal x

into y  which is nearest to original independent signal s  in 
likelihood ratio manner. 

3. NONPARAMETRIC LIKELIHOOD RATIO 
As mentioned in [2][5], the key to estimating W  for ICA is non-
Gaussianity. According to Central Limit Theorem, the Gaussianity 
of random variables is increased by the linear transformation. The 
assumption of Gaussian distribution provides no additional 
information for finding W . It is forbidden to assume Gaussianity 
for ICA. Hence, we could not use likelihood ratio criterion in (3) 
to estimate unmixing matrix. 

3.1 Nonparametric Density Estimation
However, incorrect assumptions on distribution of unknown 
signals can result in poor estimation performance. As suggested in 
[2], Boscolo et al. presented the nonparametric density estimation 
for the source signals. They adopted the mutual information as the 
objective function to derive W  while a kernel density estimation 
technique was applied.  Differently, we are presenting a new 
nonparametric likelihood ratio (NLR) objective function. There is 
no assumption of parametric distributions in NLR criterion. To 
fulfill ICA, we investigate the distribution of the transformed 

signals },,,{ 21 Myyy L  from the observed samples 

},,,{ 21 Mxxx L . Each sample is transformed by mm Wxy = .
Using the Parzen windowing approach, the nonparametric density 
of component iy  is provided by 
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where h is the kernel bandwidth and ϕ  is the univariate Gaussian 
kernel 
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Matrix W  can be expressed by TT
N

T
NNijwW ][][ 1 ww L== × .

3.2 Derivation of NLR Criterion for ICA 
Interestingly, we employ the nonparametric density function in 
likelihood ratio criterion and develop the NLR criterion for ICA. 
Under the null hypothesis, or equivalently assuming independence 
between Nyyy ,,, 21 L , the joint distribution of y  can be 

factored into the product of distributions of individual 
components. The NLR criterion accumulated from samples 

},,,{ 21 Myyy L  is established by 
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ψ  is the multivariate Gaussian kernel for vectors v  and given by  
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The log likelihood ratio is consisted of the log likelihoods from 
null hypothesis )(0 WL  and alternative hypothesis )(1 WL

)()()(log 10NLR WLWLW −=λ .                      (10) 

Then, we maximize )(log NLR Wλ  with respect to W  and find the 

optimal solution NLRW . It is a natural way to apply the gradient 

descent algorithm. Using this algorithm, we calculate two 
gradients )(0 WLW∇  and )(1 WLW∇ . Specifically, we derive the 

components of )(0 WLW∇  as 
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Also, the gradient due to alternative hypothesis has the form 
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The iterative learning algorithm for NLRW  is obtained by  
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where n  is iteration index and η  is learning rate. In summary, 
the ICA procedure based on NLR criterion is shown as follows: 
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Parameter Initialization 
Initialize W  & Set η , h

Centering 

][xxx Ekk −←
Whitening 

1. TT DE ΦΦ=][xx

2. kTk D xx ΦΦ← − 2/1

Repeat 
1. Compute )(0 WLW∇  and )(1 WLW∇
2. ))()(( 10 WLWLWW WW ∇−∇−← η
3. iii www ← , Ni ≤≤1
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Until αλλ ≥)(NLR W  (stopping criterion) 

Following the instructions suggested in [5], we perform the 
centering and whitening processes before applying NLR based 
ICA algorithm. In whitening process, the eigenvalue matrix D
and eigenvector matrix Φ  are computed. The learning process is 
terminated when αλλ ≥)(NLR W . Typically, )(NLR Wλ  has an 

upper bound 1  happening in case of independence 

∏ == N
i iyp 1)(y .

4. EXPERIMENTS 
In this study, we carry out the proposed NLR based ICA algorithm 
for speech processing applications including the blind separation 
of speech and audio signals and the clustering of speech hidden 
Markov models (HMM’s).  

4.1 Application for Blind Signal Separation
First of all, the proposed ICA algorithm is examined for BSS 
application. As shown in Figure 1, we sampled the speech and 
music signals from the ICA ’99 BSS Test Sets [8] for evaluation. 
A mixing matrix A  was randomly generated to mix the signals 
given in Figure 2. For comparison, we implement the ICA 
algorithm based on minimum mutual information (MMI) criterion 
[4]. The separated signals using MMI and NLR are illustrated in 
Figures 3 and 4, respectively. Compared to MMI, we can see the 
significant improvement when applying NLR criterion for ICA. 

During implementation, we searched the best kernel bandwidth ĥ
within a predefined region. 

Figure 1: Source speech and music signals. 

Figure 2: Mixed signals. 

Figure 3: Reconstructed signals using MMI based ICA. 

Figure 4: Reconstructed signals using NLR based ICA. 

Also, we evaluate the separation performance of speech and music 
signals by the measure of signal-to-interference ratio (SIR). Given 
original signal }{ ns  and reconstructed signal }{ ny , SIR is 

calculated by ∑∑ == −= N
i ii

N
i i sys 1

2
1

2
10 )(log10)dB(SIR . Table 1 

shows the comparison of SIR for the cases of mixed signals 
without ICA and separated signals with MMI and NLR based ICA. 
The SIR of mixed signals is measured by -1.76 dB. Using MMI 
based ICA, SIR is increased to 5.8 dB. Further, using NLR based 
ICA, the SIR was improved to 17.93 dB.  

Table 1: Comparison of SIR (dB) with and without ICA. 

4.2 Application for HMM Clustering
Further, ICA is feasible to analyze and compensate the 
pronunciation variations among speakers. In [6], it was found that 
the first and the second independent components of speech 

 Without ICA MMI-ICA NLR-ICA

SIR (dB) -1.76 5.80 17.93 
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features provided sexual and accent information, respectively. 
ICA based speech features achieved better speech recognition 
performance. Nevertheless, the pronunciation variations could be 
compensated through clustering of speech HMM’s [9]. Different 
clusters of HMM’s corresponding to the same phonetic unit 
contain the variations of gender, accent, emotion etc. Having 
sophisticated HMM’s covering different variations, we are able to 
elevate the speech recognition rates. Similarly, the speaker 
clustering was developed for speech recognition [7]. The clustered 
HMM’s close to test speaker were used to perform speaker 
adaptation. In this study, we fulfill the NLR based ICA algorithm 
for clustering of HMM’s. The speech recognition is performed 
using the extended HMM parameters. The HMM clustering 
procedure is described as follows: We first perform the forced 
alignment for all training data via a Viterbi decoder. The training 
frames corresponding to the same phonetic/HMM unit are 
collected. Then, we calculate the sample mean vectors 

nsx  for the 

states }1,{ Nnsn ≤≤  belonging to this HMM unit. This operation 

is done utterance by utterance. Accordingly, we can build 
utterance-level supervectors consisted of sample mean vectors of 

HMM states TT
s

T
s

T
s N

],,,[
21

xxxx L= . There are M  samples 

},,,{ 21 MxxxX L=  collected from M  utterances.  We 

subsequently perform ICA to find NLRW  and project the sample 

data X  to independent component subspace by XY NLRW= . As 

displayed in Figure 5, the male and female samples are well 
separated in the ICA space using NLR criterion. The clusters of 
HMM’s are estimated using the clustered data through k-means 
algorithm. In general, each cluster represents a specific kind of 
pronunciation variation. Using clusters of HMM’s, we conduct the 
experiments of continuous Mandarin speech recognition. The 
experimental setup and speech database were introduced in [3]. 
Training data contained forty males and forty females. Totally, 
there were 1000 test utterances spoken by ten males and ten 
females different from training speakers. Each HMM unit had at 
most four clusters. 

Figure 5: Scattering diagrams of the first two dimensions of 
supervectors of Mandarin subsyllable “le” in original space (upper) 

and NLR-ICA space (down). “*” and “o” represent male and 
female samples, respectively. 

 Without 
Clustering

Clustering 
with no 

ICA 

Clustering 
with MMI-

ICA 

Clustering 
with NLR-

ICA 

SER (%) 38.9 36.5 33.6 31.4 

Table 2 Comparison of SER (%) using different methods.  

As listed in Table 2, we find that clusters of HMM’s do reduce the 
syllable error rate (SER). However, the HMM model size is 
increased as well. When applying ICA for clustering, the 
pronunciation variations can be properly compensated. Finally, 
SER is improved from 38.9% without clustering to 31.4% with 
NLR-ICA clustering. 

5. CONCLUSION 
We have presented a general objective criterion to evaluate the 
independence of variables. The underlying concept was initialized 
from the statistical test of hypotheses of independence over 
dependence. It turned out that a likelihood ratio criterion was 
determined to measure the independence. To establish ICA model, 
we avoided assuming Gaussian distribution and exploited a 
nonparametric likelihood ratio criterion using kernel density 
function. The resulting NLR was maximized to estimate the 
unmixing matrix and detect the independent sources. The 
experiments on speech processing applications showed that the 
proposed NLR based ICA algorithm did not only effectively 
separate the mixed speech and audio signals but also estimate the 
clusters of HMM’s for improving speech recognition performance. 
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