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ABSTRACT

We investigate two techniques for Independent Component Anal-

ysis which use the Expectation-Maximization algorithm. Analy-

sis and simulations show that convergence becomes extraordinary

slow for almost all cases, compared to other optimization tech-

niques. The two alternatives considered are ”Adaptive Overre-

laxed EM” and Ucminf (a BFGS with soft line search), which both

improves the convergence dramatically with little or no extra an-

alytical work. We discuss the generality and perspectives of the

findings.

1. INTRODUCTION

The EM algorithm, as formulated by Dempster et al. in 1977

[1], has won enormous attention and widespread use as a maxi-

mum likelihood estimator in situations of incomplete data. This

is presumably due to its guaranteed increase in the likelihood and

the computationally appealing framework. The EM algorithm has

been applied to a vast range of problems (See e.g. [2] for exam-

ples), a clear evidence of the general success of the algorithm, but

there has also been many reports on poor convergence properties

and attempts to deal with them .

Among the many proposals for accelerating the EM algorithm

are the Aitken accelerator [3], different quasi-Newton approaches

and the Conjugated Gradient acceleration [4]. As documented in

[5], the accelerated methods can improve the performance of the

EM algorithm by a factor 10 or more, but common for all the ap-

proaches above is, that they demand more analytical computations,

which in some cases can be very troublesome. Recently, in 2003

Salakhutdinov et al. [6] proposed an extremely simple method

called ”Adaptive Overrelaxed EM” , which demands no more an-

alytical work than the basic EM algorithm but is much faster.

In this paper we demonstrate, as also reported in [7] for the

low noise limit, that when applying the EM algorithm to Indepen-

dent Component Analysis (ICA), the convergence properties are

so poor that it almost renders the approaches useless in praxis.

We also show, however, that using a quasi Newton approach or

the simple ”Overrelaxed Adaptive EM” the performance is dra-

matically improved, thus again making the ICA techniques under

consideration relevant as practical algorithms.

2. INDEPENDENT COMPONENT ANALYSIS

The two ICA methods we use in this paper, are the Mean Field ICA

(MFICA) presented in [8] and the Independent Factor Analysis

(IFA) presented in [9].

We assume the observation model xt = Ast + ηt for all time

steps t, and collect these vectors into the matrices X and S. The

job of the algorithms is to estimate the mixing matrix A know-

ing only the observed signals X. The sources st are assumed sta-

tistically independent in the coordinates and time and the noise

vector ηt is assumed white, zero-mean gaussian with known co-

variance. The negative log-likelihood F (A) = − ln p(X|A) can

be bounded from above

F (A) ≤
∫

q(S|X, Ã) ln
q(S|X, Ã)

p(S,X|A)
dS ≡ Fv(Ã,A)

for any distribution q(S|X, Ã). Using that Fv is an upper bound

on the negative log-likelihood, F , and that F = Fv when A = Ã
and q is the source posterior p(S|X,A), we choose Fv to be the

cost function. We now use the EM algorithm to minimize Fv:

• E-step: Compute Fv(An,A), using the newly updated ma-

trix An.

• M-step: Set An+1 = argminAFv(An,A).

The derivative of Fv with respect to A is W−1AG−W−1XmT ,

where W is the noise covariance, m is the mean values 〈S〉q and

G is the matrix 〈SST 〉q . In the M-step, this results in an update

equation An+1 = XmT G−1. As we shall utilize later, this shows

that methods different from EM, which uses the derivative of the

cost function, can be implemented with very little extra computa-

tional effort.

So far the two approaches are completely similar. The dif-

ference between IFA and MFICA is in the choice of distribution

q(S|X,A):

• MFICA: q(S|X, Ã) is chosen to be a factorized distribu-

tion which in each step is fitted to the source posterior using

the Kullback-Leibler divergence.

• IFA: q(S|X, Ã) is chosen to be the source posterior which

is a mixture of gaussians (MoG) when the priors are MoG’s

and the noise is gaussian also.

In IFA it is possible to compute the integral in Fv exactly thanks to

the suitable choice of the priors. In MFICA, the priors are not re-

stricted, but the integral is approximated using mean field theory.

Thus, IFA is a more straight forward but restricted model while

MFICA is a good approximation for a wide range of different pri-

ors. Note that the MFICA approximation becomes exact, when

Ã becomes orthogonal and therefore IFA and MFICA are exactly

equivalent in the special case of MoG priors and orthogonal mix-

ing matrix.

Thus, in MFICA in general, the entities m and G are approx-

imated rather than exactly determined. That makes the minimiza-

tion in the M-step an approximation, and one could argue that

MFICA is not using a true EM update. In that case, the slow-

down demonstrated in MFICA could be an effect of the approxi-

mation in stead of the EM scheme. To counter this argument, we
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Fig. 1. MFICA: An example of EM slowdown. Left: The (pro-

jected) path of EM in A-space. Right: The change of A over

iterations.

have included the IFA, which uses a true, classical EM update, and

demonstrates that the slowdowns in MFICA are also present in the

IFA and thus a result of the properties of the EM algorithm.

For the rest of this paper we focus on the slowdown of EM in

MFICA, using similar results for IFA as a way to ensure that the

conclusions on EM in MFICA is not due to the approximations

done.

3. THE PROBLEM USING EM

When implementing MFICA and IFA we find from practical ex-

perience that they both suffer from very slow convergence. I order

to investigate the reason for this we have taken a typical example

and done an analytical and numerical investigation presented in

this and next section.

The slow convergence in MFICA is evident in Fig. 1: The dots

of the iterations on the contour plot (left) has turned into a solid

line and the changes in A to the right are smaller than 10−6 for

more than 400 iterations which, compared to other optimization

techniques in the same setting, is extraordinarily slow.

In the following, an is the vector-form of An, that is, an =
vec(An). In each step, an is updated to an+1 and we can write

this as a mapping an+1 = M(an). Close to the optimal a∗, we

can make a first order Taylor-expansion of this mapping and obtain

an+1 ∼= a∗ + M′
∗(a

n − a∗) (1)

If (an−a∗) is an eigenvector to the matrix M′
∗ with eigenvalue 1,

the algorithm gets stuck even when there is still a large difference

between an and the optimal a∗. We can find the matrix M′
∗ from

the matrix formulation by using An+1 = XmT G−1 where m
and G are functions of An. We can therefore differentiate An+1

with respect to An

∂An+1

∂An
ij

= X
(dmT

dAn
ij

G−1 + mT dG−1

dAn
ij

)

in which all entities can be computed with some effort. From

this expression we can determine M′
∗ by rearranging the indices

suitably and inserting a∗ (found numerically from the algorithm).

One can also obtain an approximation of M′
∗ from the vectors an

by estimating the least square solution to Eq. 1, that is, defin-

ing α0 = [at′−1...at−1] and α1 = [at′ ...at], for some suitable

choice of t and t′, then M′
∗ ∼= α1α

T
0 (α0α

T
0 )−1. Knowing M′

∗
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Fig. 2. MFICA: An example of EM slowdown. Left: The conver-

gence rate. Right: The error induced when applying the approxi-

mation of Eq. 1

.

we are able to understand the convergence properties of EM at

least in the neighborhood of a∗. In that sense, M′
∗ is one measure

of convergence among several others.

Another more direct measure of convergence often found in

the literature [10, 2], is the rate of convergence r, which is defined

by the equation

r = lim
n→∞

||an+1 − a∗||
||an − a∗||

Under certain regularity conditions, we have further that r ∼= λmax

where λmax is the largest of the eigenvalues λi = eig(M′
∗). Since

the iterations in practice end at some point, we often investigate the

convergence rate of time n, denoted rn, in stead of r.

Using the methods presented above, we can find the matrix

M′
∗ and the convergence rate rn for the problematic example pre-

sented in Fig. 1.

Since the example has very slow convergence, it is not sur-

prising to find that the convergence rate rn is close to 1 for a large

part of the iterations. This is plotted in Fig 2 (left) together with

the distance dn = ||an − a∗||. Note on this plot that the rate of

convergence is not changing notably as the distance to the optimal

point changes. That is, the slowdown is not an effect which sets in

close to the optimal point, but rather during the entire optimization.

The matrix M′
∗ of the example is found to be M′

∗ ∼= I and

Eq. 1 a good approximation. This comes as no surprise close to

the optimal solution, but as Fig. 2 (right) demonstrates, Eq. 1 is a

good approximation far from the optimal solution. Fig. 2 (right)

shows the linearization error defined as

εn =

√||(an+1 − a∗) − M′∗(an − a∗)||2√||(an − a∗)||2

and, rather surprisingly, the errors are small in the beginning far

from the optimum. The errors in the end of the iterations blow up

due to a combination of numerical round off errors and very small

distances to the optimum.

The general picture from the example is that EM is slow be-

cause it already from a very early stage is essentially a linear up-

date with M′
∗ ∼= I. Note that this was not obviously the case: for

an far from the optimal point, the Taylor expansion in Eq. 1 could

be wrong due to the influence of higher order terms, which would

make the EM-update non-linear.
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Fig. 3. The (projected) path in A-space for different optimization

techniques on the example of Sec. 3.

4. OPTIMIZATION ALTERNATIVES

In this section we present two alternatives to EM which are appli-

cable to the MFICA (and in fact also IFA). The first is applicable

to any EM update, while the second demands, that it is possible to

compute the gradient of the cost function.

Adaptive Overrelaxed EM: The Adaptive Overrelaxed EM

(AdapEM), is a method presented in [6]: In each step, the direction

of the EM is enhanced by a step size η

An+1 = An + η(An+1
EM − An)

which is increased by a factor until the normally decreasing cost

function is suddenly increasing. When this happens, the step size

is reset to 1 and the algorithm take a step back from the value

causing the increase of the cost function - recognizing that this

was ”a mistake”.

Ucminf: The algorithm Ucminf is sometimes called the ”Hans

Bruun Minimizer” named after the person who combined the dif-

ferent parts into one algorithm with very good performance. It is a

Quasi-Newton algorithm with BFGS update of the inverse hessian

and soft line search (see [11] for details). Ucminf is using the E-

step to calculate both Fv(Ã,A) and the gradient with respect to

A and is then substituting the M-step with a more advanced mini-

mization. Not surprisingly more advanced methods provide faster

convergence - the role of the Ucminf algorithm in this setting is

twofold: 1) to demonstrate that with modest extra work on the an-

alytical part one can obtain very strong improvements and 2) to

provide an upper limit of how fast one at best can expect EM and

AdapEM to perform.

5. RESULTS

We compare the EM with the AdapEM and the Ucminf. First we

let them solve the analyzed example of Sec 3, and second we ran-

domly generate many mixing matrices and corresponding data sets

(300 in the 2x2 case, and 130 in the 3x3 case), and see how they

perform on these. The performance is measured in iterations and

not floating point operations for convenience since the extra op-

erations per iteration used in AdapEM and Ucminf are very few

compared to the total number of operations.

For both the example and the randomly generated data sets, the

prior is a MoG’s where each coordinate prior is a sum of centered

gaussians with variance 1 and 0.01, i.e. a sparse prior. The noise

variance is σ2 = 0.01 and the number of time steps is 500. When

the relative change in the cost function ||F n
v − F n−1

v ||/||F n
v || be-

comes less than 10−5 the algorithms terminate. The random mix-

ing matrices are drawn from a centered univariate normal distribu-

tion.

In Fig. 3, we see the (projected) path of the methods and con-

tours of the cost function. The EM algorithm takes so many steps

that the dots are have formed a solid line, while the other methods

are doing significantly better. The result in numbers is presented

in Table 1 a), which very clearly demonstrates the short comings

of EM: Compared to AdapEM, standard EM in MFICA is using

45 times more iterations. The fact that IFA with 645 iterations is

also performing very poorly, indicates that the slow convergence is

a property of the EM algorithm and not artifacts of MFICA. Sur-

prisingly, the AdapEM performs better than Ucminf in this partic-

ular example, but as we shall se below, the Ucminf algorithm has

a better over all performance.

For the random data sets, we first draw a random generative

mixing matrix, the corresponding data set and then a random initial

guess on the matrix. Each of the four algorithms are then applied

to the same data sets using the same initial condition, such that the

basis for comparing them is as fair as possible. With respect to the

results, we have grouped them into 3 bins according to the number

of iterations the algorithm used to converge.

The performance for 2x2 mixing matrices is presented in Ta-

ble 1 b): Using standard EM, both IFA and MFICA are most of

the time using more than 100 iterations, while Ucminf never uses

more than 50. An interesting point is that while AdapEM com-

putationally is almost as easy as standard EM, it performs much

better with only 17% of the data sets demanding more than 100

iterations.

The performance on 3x3 mixing matrices is presented in Table

1 c) and the picture is much the same. All techniques are using

more iterations than before emphasizing that the problem in the

higher dimensionality is simply more difficult, but what this table

does not show is how much more than 100 iterations EM usually

needs to converge. Practical experience indicates that the relative

difference in iterations needed for convergence is increasing with

the dimensionality, i.e., the performance of EM compared to other

methods is getting worse when the mixing matrix becomes larger.

In Fig. 4 we have plotted the determinant of the 2x2 mixing

matrix versus number of iterations for (MFICA) EM. From this

plot we, somewhat surprisingly see that when the determinant of A
is large, the EM is using more than 100 iterations. Close inspection

reveals that determinants smaller than 0.1 also makes the number

of iterations large. This indicates that (MFICA) EM only performs

well in a certain interval regarding the determinant of the mixing

matrix.
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Iterations
IFA EM 645

MFICA EM 729

MFICA Adap EM 16

MFICA Bruun 25

a) The example of Sec. 3.

Iteration bins 0-50 50-100 100-∞
IFA EM 7 % 10 % 83%
MFICA EM 1% 6% 93%
MFICA AdapEM 51% 32% 17%

MFICA Ucminf 100% 0% 0%

b) When A is 2x2.

Iteration bins 0-50 50-100 100-∞
IFA EM 5 % 6 % 89%
MFICA EM 0% 2% 98%
MFICA AdapEM 14 % 47% 39%

MFICA Ucminf 93% 7% 0%

c) When A is 3x3.

Table 1. Performance of the different approaches for the example

and general 2x2 and 3x3 mixing matrices.

6. CONCLUSIONS AND OUTLOOK

The EM algorithm as applied to the ICA techniques IFA and MFICA,

has a problem of slow convergence. Analysis and simulations

show that this slowdown is due to the fact that EM, also far from

the optimal point, approximately becomes a linear update with

very bad convergence properties. The determinant have an influ-

ence on the performance of EM in the sense that both too small

and too large determinants of the mixing matrix, makes the con-

vergence of EM slow.

Numerical investigations demonstrates that using different op-

timization techniques, one can improve the convergence dramati-

cally at a very modest analytical cost. The Adaptive Overrelaxed

EM and especially the quasi-Newton methods Ucminf is applied

with very good results. The Adaptive Overrelaxed EM is compu-

tationally as uncomplicated as EM but is much faster and therefore

a very good alternative for MFICA and IFA and perhabs any max-

imum likelihood estimation using EM.

Using either of the two improved optimizations this broadens

the applicability of MFICA and IFA. With respect to MFICA this

constitutes an important step forward because it makes the tech-

nique both flexible with respect to priors, dimensionality and con-

straints on the mixing matrix and possibly noise estimation and
numerically efficient. In this perspective, we believe that using im-

proved optimization we have not only speeded up the process but

also opened up a new area of problems for practical and efficient

solutions.
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