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ABSTRACT

This paper presents a spatio-temporal extension of the well-known
fastICA algorithm of Hyvärinen and Oja that is applicable to both
convolutive blind source separation and multichannel blind decon-
volution tasks. Our time-domain algorithm combines multichan-
nel spatio-temporal prewhitening via multi-stage least-squares lin-
ear prediction with a fixed-point iteration involving a new adaptive
technique for imposing paraunitary constraints on the multichan-
nel separation filter. Our technique also allows for efficient recon-
struction of individual signals as observed in the sensor measure-
ments for single-input, multiple-output (SIMO) BSS tasks. Anal-
ysis and simulations verify the utility of the proposed methods.

1. INTRODUCTION

The fastICA algorithm of Hyvärinen and Oja [1] is one of the most
well-known and popular procedures for both independent compo-
nent analysis (ICA) and blind source separation. For an m-element
linear non-Gaussian signal mixture, the procedure consists of a
signal prewhitening stage followed by a set of m fixed-point it-
erative procedures that extract independent components using a
non-Gaussianity signal measure. Coefficient vector orthogonality
is used to guarantee uniqueness of the extracted components. The
algorithm enjoys a number of useful properties, including fast con-
vergence, guaranteed global convergence for certain mixing con-
ditions and contrasts, and robust behavior when noise is present.

Recently, several researchers have explored spatio-temporal
extensions of spatial-only ICA and BSS procedures to attack prob-
lems in which the sources are mixed both in space and in time.
These convolutive signal mixtures appear in the design of wide-
band antenna arrays for wireless communications and in the de-
sign of microphone arrays for audio source separation and local-
ization, among other applications. The simplest of these exten-
sions treat the separation task in the (discrete) Fourier domain and
apply existing spatial-only complex-valued ICA and BSS methods
within each frequency bin. These methods suffer from a number
of problems, most notably permutation, amplitude, and scaling in-
consistencies across different frequency bins in the separated out-
puts. Although progress is being made in addressing these issues
through post-processing [2], such extensions require significant ef-
fort beyond the separation step to reconstruct the sources.

A more elegant solution is to develop convolutive BSS algo-
rithms using a time-domain separation criterion. An example of
this approach is the information-theoretic natural gradient convo-
lutive BSS and multichannel blind deconvolution algorithm devel-
oped in [3]. While this procedure can be successful, the source
distributions must be approximately known, and the number of

sources must be exactly known as they are simultaneously ex-
tracted. These issues make such information theoretic approaches
less practical.

In this paper, we present a spatio-temporal extension of the
aforementioned fastICA algorithm to both convolutive BSS and
multichannel blind deconvolution tasks. The proposed time-domain
algorithm combines multichannel whitening via multi-stage least-
squares linear prediction with a fixed-point iteration involving a
new adaptive technique for imposing paraunitary constraints on the
multichannel separation filter. A unique feature of our approach
is its ability to easily and individually reconstruct the sources as
they appear in the observed signal mixtures for the single-input,
multiple-output (SIMO) BSS separation task. Analytical results
regarding the adaptive paraunitary constraint procedure are pro-
vided, and simulations indicating the usefulness of the proposed
approach for convolutive BSS are given.

2. PROBLEM FORMULATION AND EXISTING WORK

We first describe the SIMO BSS task [4]. Let si(k), 1 ≤ i ≤ m
denote m spatially-independent source signals, such that si(k) is
independent of sj(l) for i �= j. These sources are measured in an
n-dimensional signal mixture with n ≥ m as

xj(k) = νj(k) +

mX
i=1

∞X
p=0

ajipsi(k − p) (1)

for 1 ≤ j ≤ n, where {aijp} are the coefficients of the multi-
channel mixing system and νj(k) is uncorrelated Gaussian sensor
noise. The goal is to extract estimates of the sources as they appear
in the signal mixtures, ideally given by the mn signal set

xij(k) =

∞X
p=0

ajipsi(k − p) (2)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. In practice, each bxij(k) is
estimated from a set of separated source signals yi(k) as

bxij(k) =
MX

p=0

gjipyi(k − p) (3)

where M is a filter length parameter and {gjip} must be estimated
or calculated from the separation system, the extracted signals
{yi(k)}, and/or the original input signal mixtures {xj(k)}.

Previous work has identified two strategies for finding {bxij(k)}
after the separated sources {yi(k)} have been found. The first
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Fig. 1. Block diagram of the combined separation and signal reconstruction system.

strategy uses traditional linear estimation to calculate the {gijp}
coefficients, where the {xij(k)} are the desired signals and the
{yj(k)} are the reference signals [5]. This approach is compli-
cated if the {yi(k)} are not uncorrelated in time, however, as
it involves m disjoint n(M + 1)-dimensional estimation tasks.
Moreover, it requires signal averaging between the {yj(k)} and
the {xi(k)}. The second calculates the inverse of the separation
system for the {gijp} [6]. This procedure is challenging due to the
difficulty of calculating a multichannel system inverse that does
not exploit a specific system structure. These procedures gener-
ally require filter lengths M that are longer than that of either the
separation system or the original mixing channel.

3. THE PROPOSED METHOD

We propose a different strategy. Consider Fig. 1, which shows a
signal processing architecture containing a prewhitening stage, a
separation stage, and a signal reconstruction stage. Each of these
processing stages is now described.

The goal of the prewhitening stage is to decorrelate the orig-
inal signal mixtures in both space and time. We propose a multi-
step prewhitening structure using pairs of multichannel linear sys-
tems with transfer function matrices given by

Pi(z) = D
(P )
i

266664
P11i(z) P12i(z) · · · P1ni(z)

0 P22i(z)
...

...
. . .

0 · · · 0 Pnni(z)

377775 (4)

Qi(z) = D
(Q)
i

266664
Q11i(z) 0 · · · 0

Q21i(z) Q22i(z)
...

...
. . . 0

Qn1i(z) · · · Qnni(z)

377775 (5)

where the causal {Pi(z)} and {Qi(z)} are multichannel FIR fil-
ters of length K, the causal filters {Pjji(z)} and {Qjji(z)} have
unity zero-lag coefficient values, and D

(P )
i and D

(Q)
i are (n × n)

diagonal scaling matrices. The coefficients for the jth row of the
{Pi(z)} transfer function matrices are calculated by solving a
least-squares multichannel forward linear prediction task, e.g. by
minimizing the output power of the jth output signal. The diago-
nal entries of D

(P )
i are then calculated so that the scaled forward

error residuals have unity variances. These scaled error residuals
are used as inputs to the {Qi(z)} multichannel system, in which
the jth row of the {Qi(z)} transfer function matrices are calcu-
lated by solving a second least-squares multichannel forward lin-
ear prediction task. The diagonal entries of D(Q)

i are subsequently
calculated so that these error residuals have unity variances. Note
that this proposed method is a block-based procedure.

Several stages of this processing strategy are usually required
because the estimation of Pi(z) and Qi(z) is performed in a dis-
joint and sequential fashion. The exact number of stages k can
be made adaptive, with a stopping criterion that depends on how
much Pk(z) and Qk(z) differ from identity.

The above prewhitening strategy has an important advantage:
Both Pi(z) and Qi(z) can be easily inverted without calculating
any new filter coefficients, using the linear system equivalent of
backsubstitution. Thus, so long as the linear system within the
separation stage can be easily inverted, creating the inverse of the
entire prewhitening-separation system is straightforward.

The goal of the second stage is to perform separation of the
prewhitened signal mixtures based on non-Gaussianity. Here, we
propose a novel extension of the fastICA algorithm that imposes
structure on the separation system coefficients. Define the prewhi-
tened input signal vector as

v(k) = [vT
1 (k) vT

2 (k) · · · vT
n (k)]T (6)

vj(k) = [vj(k) vj(k − 1) · · · vj(k − L + 1)]T (7)

Furthermore, define

wi = [wT
i1 wT

i2 · · · wT
in]T (8)

wij = [wij0 wij1 · · · wij(L−1)]
T (9)

as the separation system coefficient vector for the ith system out-
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Table 1: MATLAB implementation of the proposed spatio-temporal fastICA algorithm.
---------------------------------------------------------------+---------------------------------------------
function [y,W] = stfica(v,L,numiter); | function [Wi] = orthW(W,n,L,numorth);

|
L = L + rem((L+1),2); | i = size(W,2);
[n,N] = size(v); | Wi = W(:,i)/norm(W(:,i));
W = kron(eye(n),[zeros((L-1)/2,1);1;zeros((L-1)/2,1)]); | for k=1:numorth
V = zeros(n*L,N); | Wt = zeros(n*L,1);
for i=1:n | for j=1:i-1

V((i-1)*L+1:i*L,:) = toeplitz([v(i,1);zeros(L-1,1)],v(i,:)); | Wt = Wt + gfun(Wi,W(:,j),n,L);
end | end
y = zeros(n,N); | Wi = 3/2*Wi - 1/2*gfun(Wi,Wi,n,L) - Wt;
for i=1:n | end

Wold = zeros(n*L,1); +---------------------------------------------
k = 0; | function [G,C] = gfun(U,V,n,L);
y(i,:) = W(:,i)’*V; |
crit = 1; | Wi = zeros(L,n); Wi(:) = U;
while (crit*(k<numiter)) | Wj = zeros(L,n); Wj(:) = V;

Wold = W(:,i); | Ct = zeros((3*L-1)/2,1);
k = k+1; | Z = zeros((L-1)/2,1);
f = y(i,:)’.ˆ3; % OR f = tanh(20*y(i,:)’); | ll = (L+1)/2:(3*L-1)/2; llr = L:-1:1;
fp = 3*sum(y(i,:).ˆ2); % OR fp = 20*sum(sech(20*y(i,:))); | for i=1:n
W(:,i) = V*f - fp*W(:,i); | Ct = Ct + filter(Wi(llr,i),1,[Wj(:,i);Z]);
W(:,i) = orthW(W(:,1:i),n,L,10); | end
y(i,:) = W(:,i)’*V; | C = Ct(ll);
crit = (abs(abs(W(:,i)’*Wold)-1)>0.0001); | Gt = filter(C(llr),1,[Wj;zeros((L-1)/2,n)]);

end | Gt = Gt(ll,:);
end | G = Gt(:);
---------------------------------------------------------------+---------------------------------------------

put. Then, we compute the ith separated signal sequence as

yi(k) = wT
i v(k) (10)

for 1 ≤ k ≤ N , assuming a data record length of N samples.
The coefficient vectors {wi} are updated iteratively using a

modified version of the fastICA algorithm as follows:

• Step 1: Compute yi(k) in (10) for 1 ≤ k ≤ N .

• Step 2: Update the coefficient vector as

wi ←− 1

N

NX
k=1

f(yi(k))v(k) − f ′(yi(k))wi, (11)

where f(yi) is the contrast nonlinearity.

• Step 3: Normalize the length of the coefficient vector as

wi ←− wiq
wT

i wi

(12)

•Step 4: While wi is not paraunitary with w1, w2, . . ., wi−1,

wi ←− 3

2
wi − 1

2
g(wi, wi) −

i−1X
j=1

g(wi,wj) (13)

where g(wi,wj) = [gT
ij1 gT

ij2 · · · gT
ijm]T with

gijk = Cijwjk (14)

and the (p, q)th element of Cij is given by

[Cij ]pq =

8><>:
mX

k=1

L−1X
l=0

wjklwik(l+p−q) if |p − q| <
L − 1

2

0 otherwise.

(15)

The first three steps of this procedure are identical in form to
the single-unit fastICA algorithm. To understand Step 4, define the
(n × 1)-dimensional ith system vector polynomial as

Wi(z) =

L−1X
j=0

[wi1l wi2l · · · winl]
T z−l. (16)

Then, (13)–(15) can be expressed using polynomials as

Wi(z) ←− 3

2
Wi(z)−

»
1

2

h
WT

i (z−1)Wi(z)
i(L−1)/2

−(L−1)/2
Wi(z)

+

i−1X
j=1

h
WT

j (z−1)Wi(z)
i(L−1)/2

−(L−1)/2
Wj(z

#L−1

0

) (17)

where [·]KJ denotes truncating the polynomials of its argument to
order −J through −K. Extensive simulations of this iterative sub-
procedure indicate that (17) causesh

WT
i (z−1)Wi(z)

i(L−1)/2

−(L−1)/2
−→ 1 (18)h

WT
j (z−1)Wi(z)

i(L−1)/2

−(L−1)/2
−→ 0 for 1 ≤ j < i.(19)

The above constraints are a spatio-temporal extension of the or-
thonormality constraints imposed on wi in the original fastICA
procedure and imply that the separation system is paraunitary.

As further justification of the iterative procedure for enforcing
paraunitary constraints, let L → ∞, and define

wi = Wi(z)|z=ejω (20)

Wi =
ˆW1(z) W2(z) · · · Wi−1(z)

˜˛̨
z=ejω (21)

Then, (17) can be rewritten as

wi,new = 3
2
wi − 1

2
||wi||2wi − WiW

H
i wi (22)

where ·H denotes Hermitian transpose. Define the variables

a0i = ||wi||2 − 1 (23)

a1i = ||WH
i wi||2 (24)

where ||wi||2 = wH
i wi. The condition |a0i| = a1i = 0 im-

plies that [W1(z) · · ·Wi(z)] form an m-dimensional paraunitary
sequence if [W1(z) · · ·Wi−1(z)] is already paraunitary. Then,
(22) implies that these state variables evolve as

a0i,new =
1

4
a2
0i(a0i − 3) + (a0i − 1)a1i (25)

a1i,new =
1

4
a2
0ia1i. (26)
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Fig. 2: Evolution of E{ca2
0i} and E{ca1i} for (13)–(15).

This pair of nonlinear coupled scalar equations can be easily sim-
ulated for different initial conditions, and such simulation studies
show that a0i and a1i converge to zero for a wide range of initial
value pairs. Empirically, we have observed convergence of this
system if

−1 < a0i < 2
a1i < a0i + 1

or
0 < ||wi||2 < 3

||WH
i wi||2 < ||wi||2,

(27)

which are typically satisfied in practice.
Table 1 provides MATLAB code for implementing the spatio-

temporal fastICA algorithm complete with appropriately chosen
stopping criteria, where v is the (n × N) prewhitened signal ma-
trix, L is the separation system filter length, and numiter is the
maximum number of iterations of the fastICA routine.

The goal of the last set of parallel stages, shown at the bottom
of Fig. 1, is to reconstruct the individual sources as they appear
in the original mixtures. The reconstruction of the ith separated
signal involves setting all but the ith signal yi(k) to zero and then
passing this signal through the inverse of the prewhitening and sep-
aration systems. For this calculation, note that

[W(z)Qk(z)Pk(z) · · ·Q1(z)P1(z)]−1

= P−1
1 (z)Q−1

1 (z) · · ·P−1
k (z)Q−1

k (z)WT (z−1) (28)

due to the paraunitariness of W(z) as constructed by the separa-
tion stage. Because of the triangular structures of the Pi(z) and
Qi(z) systems, they can be easily inverted.

The method we have described has a number of advantages
over competing approaches:

1. No step size needs to be selected.

2. Knowledge of the source distributions is not needed, so long as
their statistics imply a non-zero contrast value.

3. The number of non-Gaussian sources within the mixture need
not be known a priori.

4. For SIMO BSS, the system inverse used for signal reconstruc-
tion is computed directly and exactly.

5. Convergence of the newly-developed spatio-temporal fastICA
procedure appears to be as fast as its spatial-only counterpart; usu-
ally fewer than 10 iterations per unit are needed for i.i.d. sources.

4. SIMULATIONS

We now present numerical evaluations indicating the performance
of the proposed methods. We first investigate the iterative parau-
nitary constraint scheme in (13)–(15). For these evaluations, we
have chosen n = 10 and L = 51. For each simulation run, wi was
initialized to a 510-element vector containing zero-mean uncorre-
lated Gaussian noise of variance 10−4 summed with a single non-
zero unity-valued “center” tap at position k = L(i−1)+(L+1)/2.
Shown in Fig. 2 for 1 ≤ i ≤ 5 are the average evolutions of

E{ca2
0i} and E{ca1i}, computed from the elements of Cij for 1 ≤

j ≤ i, as averaged over 100 different simulation runs. As can be

seen, convergence to a paraunitary condition given by E{ca2
0i} ≈ 0

and E{ca1i} ≈ 0 is fast, approaching the machine precision of
MATLAB in about 10 iterations.

We now demonstrate the ability of the proposed method to
solve the SIMO BSS task. The measurements used for this evalua-
tion were taken from a two-loudspeaker, two-microphone acoustic
laboratory setup similar to that described in [7], in which the room
reverberation time was approximately 130 msec. Mixtures con-
taining a male and a female talker sampled at 8kHz were processed
using the technique in Fig. 1, where k = 4, K = 101, L = 81,
N = 55200, and numiter= 100. After processing, the mean-
squared errors between the reconstructed sources and the original
mixtures for the two-channel signals were between 10 dB and 11.8
dB below the powers of the original source mixtures for both talk-
ers in the four output channels. In addition to these results, we
have verified that our proposed method successfully deconvolves
convolutive mixtures of i.i.d. signals with binary, uniform, and
Laplacian distributions; these results are omitted due to space lim-
itations.

5. CONCLUSIONS

In this paper, we have described a spatio-temporal extension of
the well-known fastICA procedure. Our method employs least-
squares prewhitening methods and a novel iterative scheme for
maintaining paraunitary constraints on the separation system. The
procedure enables the reconstruction of the individual sources with-
in the signal mixtures for single-input, multiple-output BSS with-
out explicitly calculating the inverse of the separation system’s
impulse response. A theoretical study of the proposed method’s
capabilities is the subject of current work.
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