
PERFORMANCE ANALYSIS OF THE FILTERED BACKPROJECTION IMAGE
RECONSTRUCTION ALGORITHMS

Thammanit Pipatsrisawat, Aca Gačić, Franz Franchetti, Markus Püschel, and José M. F. Moura

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, U.S.A.

ABSTRACT

We investigate performance tradeoffs for a class of filtered back-
projection (FBP) image reconstruction algorithms. The re-
cently developed fast hierarchical backprojection asymptotically
achieves the same O(N2 log N) cost as Fourier-based methods
while retaining many advantages of the FBP technique. In this pa-
per, we provide a detailed cost and performance analysis of the al-
gorithm on a general purpose platform. Based on carefully tuned
implementations of both the direct and the hierarchical backpro-
jection, we explore the tradeoffs between distortion and runtime
by varying several algorithm and implementation choices. Experi-
mental results show that, given the desired performance, the choice
of algorithm parameters is not obvious and largely depends on the
image properties and the underlying computer platform.

1. INTRODUCTION

Many imaging techniques are based on reconstructing an image
from data that can be interpreted, either directly or after some pre-
processing, as a set of projections of the imaged object. Most
notable examples are medical imaging techniques such as com-
puted tomography (CT) and spotlight-mode synthetic aperture
radar (SAR) imaging. Several approaches to the reconstruction
problem have been proposed, of which the transform-based meth-
ods have been most common in practical use. The mathematical
foundation is provided by the Radon transform (RT) which com-
putes 1-D projections of a 2-D data at different view angles. In
CT imaging, for example, the data is obtained by passing a set
of narrow X-ray beams through the scanned object and collect-
ing their intensities using an array of sensors. The acquired data
represents the Radon transform of the cross-sectional absorbtion
densities that form the image [1]. Munson et al. [2] showed that
the data collected by the SAR, after demodulation and lowpass fil-
tering, represents the Fourier transform of the projections obtained
from the reflectivity density of the targeted ground patch.

For the transform-based approach, the reconstruction problem
can be viewed as the problem of inverting the Radon transform.
Two main methods have been studied and used most. The di-
rect Fourier methods compute the Fourier transform of the pro-
jections, interpolate the data from polar to Cartesian grid, and re-
construct the image using the inverse 2-D FFT with the total cost
of O(N2 log N). However, most popular in practice are meth-
ods based on the backprojection (BP) operation which reduces the
distortion by avoiding the interpolation step. The BP approach
is also more suitable to handle other problems such as wavefront
curvature effects in SAR imaging. In the popular filtered back-
projection (FBP) algorithm, the projections are first filtered and

This work was supported by NSF through awards 0234293, 0310941,
and 0325687. Franz Franchetti was supported by the Austrian Science
Fund FWF’s Erwin Schroedinger Fellowship J2322.

then backprojected to reconstruct the original image (e.g., [1]).
The FBP algorithm typically provides better accuracy at a higher
O(N3) cost. Basu and Bressler [3] developed a new method for
the parallel-geometry FBP based on hierarchical decomposition
and angular downsampling of the backprojection operation (the
HBP method), which asymptotically reduces the cost to the de-
sired O(N2 log N). However, the cost reduction achieved in the
HBP algorithm comes at the expense of an increased level of dis-
tortion. Furthermore, because of the higher complexity of the data
flow, it is not clear when the lower computational cost translates to
a more efficient implementation.

In this paper, we focus on the backprojection (BP) operation,
the computational bottleneck of the FBP algorithm. First, we pro-
vide a detailed cost analysis of both the direct BP and a parame-
terized HBP. We then present optimized implementations of these
algorithms which provides the flexibility to investigate different
algorithm choices. The experimental results are aimed at show-
ing that careful performance analysis is needed to determine the
efficiency of the backprojection algorithms, w.r.t. both runtime ef-
ficiency and distortion. Necessary steps include careful tuning of
code, exploring various algorithmic and implementation degrees
of freedom, and performing tests on a diverse set of images.

2. FILTERED BACKPROJECTION ALGORITHMS

The Radon transform (RT) represents a set of parallel line integral
projections of a 2-D function f(x, y) at different angles θ. The
continuous Radon transform is defined by

f̂(r, θ) =

∫ ∫
f(x, y)δ(r − x cos θ − y sin θ)dx dy, (1)

where r and θ are polar coordinates and δ is the unit impulse. The
projections f̂(r, θ) are also referred to as the data sinogram. In
their original form, filtered backprojection (FBP) algorithms are
based on the well-known inversion formula for the RT:

f(x, y) = Bf̃(ρ, θ), f̃(ρ, θ) = F−1
r |ωr|Fr f̂(r, θ). (2)

Here, F̂ (ωr, θ) = Fr f̂(r, θ) represents a 1-D Fourier transform
in the variable r, and B is the continuous backprojection operator

f(x, y) = Bf̃(ρ, θ) =

∫ π

0

f̃(x cos θ + y sin θ) dθ. (3)

The projections f̂(r, θ) are first filtered using the ramp filter
|ωr| and then backprojected to reconstruct the image.

Discrete direct backprojection. In practice, the number of
projections P and the sampling distribution are determined by the
data acquiring equipment, and the reconstructed image is discrete.
We will assume that the projection angles θ are evenly distributed
in the interval [0, π) and that all images are square with N × N

V - 1530-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

pixels. To implement the FBP algorithm on a computer, the back-
projection operation is discretized and the ramp filter is windowed
and sampled. The discrete backprojection is performed for each
pixel f(m, n) as a sum of projected values over all angles θ:

f(m, n) =
∑

θ

f̃(m cos θ + n sin θ, θ). (4)

Interpolation with a kernel φ(ρ) in the radial direction is required
to compute sampled f̃ at non-integral values. Better approxima-
tion to the continuous backprojection can be achieved by introduc-
ing the image sampling operator to model the physical properties
of the sensing equipment [3]. In our implementation, however, we
use the ideal sampling kernel.

Hierarchical backprojection. The hierarchical backprojec-
tion (HBP) algorithm uses the fact that the angular bandwidth of
the sinogram is proportional to the size of the image [4]. Basu and
Bresler [3] showed that, under certain assumptions on the image,
the problem can be recursively decomposed into a problem of
backprojecting onto sub-images using a proportionally smaller
number of projections. If the image is, for example, separated into
four quadrants of size N/2×N/2, then they can be backprojected
using only P/2 available projections. Assuming that N = 2n, the
algorithm can be recursed n times to reach the base case with only
one remaining pixel (B = 1). This leads to an algorithm with
O(N2 log N) arithmetic cost. Anti-aliasing with a filter ψ(θ)
is applied after angular downsampling to reduce the distortion.
However, some aliasing occurs at each step of the recursion and
the effect largely depends on the spectral properties of the image.
To investigate this cost/distortion tradeoff, we design a flexible
recursion strategy (see schematics in Figure 1) described by the
following pseudo-code:

Algorithm 1 (Parameterized HBP Algorithm)

BACKPROJECTION (N, f̃(ρ, θ))
if N ≤ B then

return DIRECT BACKPROJECTION(N, f̃(ρ, θ))
else

for i = 1 . . . 4 do
if N ≤ D then

f̃(ρ, θ) ← DOWNSAMPLE (f̃(ρ, θ), φ(ρ), ψ(θ))
endif
f̃i(ρ, θ)) ← SEGMENT(f̃(ρ, θ)), i)

bi(x, y) ← BACKPROJECTION (N/2, f̃i(ρ, θ))
endfor
return TILE BLOCKS(b0(x, y), . . . , b3(x, y))

endif

First, the recursion simply segments the original image sino-
gram into sub-sinograms corresponding to image blocks of size
D without downsampling. This is really a form of angular over-
sampling suggested in [3] to further decrease the distortion. From
that point on, the angular smoothing and downsampling is applied
recursively until a base case block size B is reached. At that mo-
ment, the direct backprojection is applied to all sub-sinograms, and
the resulting image blocks are tiled to form the reconstructed im-
age. For example, for D = B = N , the algorithm is equivalent to
the direct BP, and for D/B = 1 no cost savings occur.

Savings in arithmetic cost occur only for sub-image sizes in
the range between D and B (dotted line in Figure 1), where the
projections are downsampled. We vary both D and B to examine
the effects on performance.

......................
segmentation downsampling direct BP

N D B 1

Fig. 1. Recursion strategy for the HBP algorithm; cost savings
occur in the dotted range.

Cost of direct and hierarchical backprojection. The num-
ber of collected projections P is typically chosen to be propor-
tional to the image size P ∼ N . The direct backprojection opera-
tion dominates the cost since it requires a summation of P values
for all N2 pixels and is hence O(N3), where we assume an inter-
polation cost of O(1). The cost of the direct BP is

CBP (N, P, φ) =
(
10 + c(φ)

)
N2P + N2 + 4. (5)

The constant c(φ) depends on the chosen radial interpolator φ
(e.g., c(φ) = 4 for linear and c(φ) = 10 for cubic spline).

The exact arithmetic cost (counting additions, multiplications,
absolute value, and rounding equally) of our parameterized HBP
algorithm is given by

CHBP (N, P, D, B, φ, ψ) =

c1(φ, ψ)P
⌈√

2N
⌉

D
N

log2

(
D
B

)
+ c2(φ)N2P B

D

+ c3P
(

N
D

)2
+ c4

(
D
B

)2
+ c4P

D
B

+ N2 + O(N) (6)

In the limit case when D = N and B = 1, the cost approaches
O(N2 log N) or, precisely,

CHBP = c1(φ, ψ)PN log2 N + O(N2). (7)

The constants c1 and c2 depend on the choice of the interpolator
and the anti-aliasing filter ψ(θ). We choose ψ(θ) = [0.5 1 0.5]
for all experiments. Then, for example, c1 = 40, c2 = 20 for the
linear and c1 = 88, c2 = 46 for the cubic spline interpolator. Note
that in (6) the second term dominates the cost when the window
size D/B is small and the third term dominates when D is chosen
small. In both cases the cost approaches O(N 3).

3. IMPLEMENTATION AND OPTIMIZATION

This section describes our C implementation of algorithm 1. Our
goal was fast and portable code that enables investigation of per-
formance tradeoffs as well as implementation choices.

System Design. Our system implements algorithm 1 by the
following functions: 1) BACKPROJECTION() is the main recur-
sive function. Depending on the current state of the recursion and
the parameters B and D, it applies the recursive algorithm with
or without downsampling or calls the direct method; 2) DIRECT-
BACKPROJECTION() implements the direct BP algorithm; 3) The
functions DOWNSAMPLE(), TILEBLOCKS() and SEGMENT() are
helper functions and a part of BACKPROJECTION(); The functions
φ(ρ) and ψ(θ) can be runtime or compile-time parameters trading
speed versus generality. Allowing for automated investigation of
program configurations and algorithm parameterizations, we make
heavy use of the C preprocessor. To avoid data copying in TILE-
BLOCKS() and SEGMENT() we used dynamic memory allocation
involving pointer arithmetic instead of 2D arrays and sub-arrays.

Optimization. To facilitate debugging and verification, we
first implemented algorithm 1 in a straight-forward manner. We
then restructured our implementation to optimize for speed. Opti-
mizing compilers featuring inter-procedural optimization support

V - 154

➡ ➡

Optimization Methods Runtime
Basic implementation 41.20 s
+ Loop invariant code motion and loop fusion 0.64 s
+ Precomputation of constants 0.23 s
+ Function inlining and further loop fusion 0.08 s

Table 1. Impact of optimization methods on the runtime for N =
P = 128. The fastest version applying all optimization methods
is running at 15 % of the machine’s peak performance.

most of the optimization techniques we applied. However, the
compilers often underachieve when optimizing codes featuring
pointer arithmetic so we resort to hand-optimization. In addition
we applied some problem-specific optimizations. For a problem
size of 128 × 128 pixels and 128 projections, our optimized im-
plementation runs at approximately 15 % of the system’s peak per-
formance and is 500 times faster than our basic implementation.
Table 1 summarizes the impact of different optimization steps that
are detailed below.

Function Inlining. When the functions computing φ(ρ) and
ψ(θ) are compile-time parameters, we inline them to avoid the
function call overhead. In addition, we make sure that mathemati-
cal library functions are inlined when supported by the compiler.

Loop Invariant Code Motion. The functions DOWNSAM-
PLE() and DIRECTBACKPROJECTION() contain loops which com-
pute expressions with loop-invariant sub-expressions. These sub-
expressions are moved outside of the loops.

Loop Fusion. We fused the functions DOWNSAMPLE() with
SEGMENT() and TILEBLOCKS() with BACKPROJECTION() lead-
ing to multiple loops operating on the same data set. In addition,
the function DOWNSAMPLE() contains application of both φ(ρ)
and ψ(θ) translating into a sequence of loops over the same data
set. To optimize for locality, we reordered the computation and
fused these sequences of loops leading to a small number of loops
with more compute-intensive loop bodies.

Precomputation of Constants. We precompute the values of
sin θ and cos θ for all angles θ and store the results in an array. This
replaces an evaluation of a transcendental function by a memory
access.

4. RESULTS

We evaluated our implementation of algorithm 1 for runtime and
distortion performance as a function of several parameters.

Platform. We performed all experiments on a 3.2 GHz Intel
Pentium 4 platform with 8 kB L1, 512 kB L2 data cache, and 1GB
DDR RAM. The system was running Linux Fedora Core 2 and we
were using the Intel C++ compiler 8.0 with compiler flags “-fast”
which was experimentally determined to be the best choice.

Performance metrics. As the runtime performance measure
we use the execution time of the compiled C code as well as the
number of floating point operations per second (FLOPS). To mea-
sure the distortion, we use both visual and quantitative measures.
For the latter we choose the root mean square error (RMSE) of the
reconstructed image f̄(m, n) relative to the original f(m, n):

εRMSE =
√

‖f̄ − f‖F /‖f‖F , (8)

where ‖ · ‖F is the Frobenius norm.

Experimental Setup. All experiments are performed on im-
ages of size 512 × 512 pixels with P = 1024 projections. We
evaluate different algorithm strategies by varying both D and B,

and by choosing our radial interpolator φ(ρ) as either the nearest
neighbor, linear, cubic, or cubic spline. In our experiments we use
four images with different spectral characteristics: 1) The standard
Shepp-Logan phantom head image, 2) “peppers”, a smooth picture
featuring soft shapes, 3) “harbor”, a highly detailed image with
substantial energy in the high frequency range, and 4) “Gaussian”,
an image created of several 2D Gaussian functions with different
means and variances. Both the ramp filtering and the forward 2D
RT are performed using MATLAB, where for the RT we use MAT-
LAB’s radon function.

1 2 4 8 16 32 64 128 256 512
0

10

20

30

40

R
u

n
 t

im
e

 (
s
)

Base Case Size B
1 2 4 8 16 32 64 128 256 512

200

300

400

500

600

M
F
L
O
P
S

Nearest
Linear
Cubic
Cubic Spline

Fig. 2. Runtime (contiguous line) and FLOPS (dashed line) for
various base case sizes and interpolators.

Runtime performance experiments. In the first experiment
we analyze the runtime behavior of algorithm 1 without oversam-
pling (D = N) by varying the parameter B from the fully recur-
sive O(N2 log N) case where (B = 1) to the direct BP method
(B = N). The results in Fig. 2 show that the runtimes using
various interpolators rise proportionally with their cost, i.e., cu-
bic spline is slowest while nearest neighbor is fastest. On the other
hand, the cost savings arising from the recursion and downsam-
pling (see Figure 1) do not always provide the fastest turnaround
time since more recursion steps mean more complicated data ac-
cess patterns. The full recursion is 50 % slower than the optimal
runtime obtained for B = 16. The algorithms perform at 10 %
to 15 % of the peak performance and show best performance for
medium to large base case sizes where data access patterns and the
amount of arithmetic operations are best balanced. For the direct
method the performance drops significantly due to cache effects.

In the second experiment, we include the angular oversam-
pling controlled by the size D as we explained in Section 2. Fig-
ure 3 (top) shows the runtime plots for all combinations of B and
D, where we use the cubic spline interpolator. Different lines cor-
respond to different window sizes (D/B) (see Figure 1) whereas
the x-axis determines the window position B. For the maximum
execution speedup, it is clearly advantageous to use B as large as
possible for a fixed window length. It remains to explore how these
choices affect the reconstruction accuracy, which we do next.

Distortion analysis experiments. Using the same setup as
for the runtime experiments, we create error plots for the phan-
tom head and the harbor image, shown below the runtime plot
in Figure 3. For the phantom head, a smaller base case size al-
ways gives smaller error for the same window length. However,
we might choose to trade accuracy for speed or vice versa. For

V - 155

➡ ➡

Fig. 4. Harbor image for B = N (left) and B = 32, D = 128 (left center); Peppers image for B = N (right center) and B = 16 (right).

8 16 32 64 128 256 512
0

5

10

15

20

25

30

35

Base Case Size B

R
un

 T
im

e
(s

)

D/B=1
D/B=2
D/B=4
D/B=8
D/B=16
D/B=32
D/B=64

8 16 32 64 128 256 512
0.1

0.15

0.2

0.25

0.3

Base Case Size B

R
M

S
E

SheppLogan Phantom Head

Harbour Image

D/B=1

D/B=2

D/B=4

D/B=8

D/B=16

D/B=32

D/B=64

Fig. 3. Runtimes (top) and RMSE (bottom) for different recursion
strategies.

example, choosing B =64, D =256 is slightly less accurate than
B = 64, D = 128, with almost 40% speedup. In the case of the
harbor image, given the fixed window size D/B, it is not clear
which choice of B gives best performance. We note that for both
images the speedup gains are more prominent than the variation of
distortion for the fixed window size, which suggests that varying
B is more effective for achieving the desired result than choosing
a different D.

Image Nearest Linear Cubic Cubic Spline

Gaussians (M) 0.06772 0.06731 0.06716 0.06701
Gaussians (A) 0.02939 0.02703 0.02696 0.02697

Table 2. RMSE of the Gaussian image reconstructed by FBP.

At this point we note that the computed RMSE includes errors
introduced by the forward RT as well as the ramp filtering, both
performed in MATLAB. In Table 4 we show errors of the recon-
struction using the direct BP algorithm for the Gaussian image,
where the sinogram is obtained: (M) using MATLAB; (A) ana-
lytically to avoid forward RT error. For this particular image, the
forward RT error contributes for about 60 % of the total error.

Assessment of visual quality. Figure 4 shows the recon-
structed images using our implementation of the HBP algorithm.
We compare the result for the harbor image using the direct BP and
the HBP algorithm with B =32, D=28. The distortion is notice-
able only under closer inspection while the runtime improved by
about 62%. In the case of the peppers image, even the fastest im-
plementation (B = 16) gives only slightly blurred reconstructed
image as shown in Figure 4 (right). The speedup in this case is
about 10 times, from 22.3 s for the direct BP to 2.3 s for the fastest
HBP algorithm.

5. CONCLUSION

We parameterized the hierarchical backprojection algorithm with
several algorithmic choices and optimized the C implementation
for best performance. We presented an extensive runtime and dis-
tortion evaluation to investigate interesting tradeoffs and provided
a detailed cost analysis of the algorithm. The results show that,
given the desired performance, the parameter choice depends on
image properties and features of the target computer platform.

6. REFERENCES

[1] F. Natterer, The Mathematics of Computerized Tomography.
New York: Wiley, 1986.

[2] D. C. Munson, J. D. O’Brien, and J. W. K., “A tomographic
formulation of spotlight-mode synthetic aperture radar,” Pro-
ceedings of the IEEE, vol. 71, pp. 917–925, August 1983.

[3] S. Basu and Y. Bresler, “O(N 2 log2 N) filtered backprojec-
tion reconstruction algorithm for tomography,” IEEE Trans.
on Image Processing, vol. 9, pp. 1760–1772, October 2000.

[4] P. A. Rattey and L. A. G., “Sampling the 2-d radon trans-
form,” IEEE Trans. on Acoustics, Speech, and Signal Proc.,
vol. ASSP-29, pp. 994–1002, October 1981.

V - 156

➡ ➠

