
ABSTRACT

Many of today’s Electronic Design Automation (EDA)

tools include Intellectual Property (IP) cores that are fully

pipelined to increase data throughput. Using these cores to

implement data paths that do not involve feedback can

result in fast, efficient designs. However, if they are used

within a feedback loop this is not always the case. This

paper examines the effects that using pipelined cores in

feedback loops can have on a design. By considering two

designs that implement a Givens rotation using feedback,

which is used in QR decomposition [1], it is shown that,

even though a pipelined design can be clocked faster, its

data throughput is less than a non-pipelined design. Also,

the non-pipelined design is shown to be smaller and

consumes less power. Finally, a suggestion for a more

efficient use of pipelining in feedback loops is presented,

based on channel interleaving [2].

1. INTRODUCTION

Increasingly, many high sampling rate DSP algorithms are

implemented on dedicated hardware rather than DSP

processors. This has led to the development of EDA tools

that allow engineers to design and simulate DSP systems

before automatically generating an equivalent hardware

design. Field Programmable Gate Arrays (FPGAs) are ideal

for this type of rapid development and thus, in the current

market, many of the DSP design EDA tools have been

developed by FPGA manufacturers [3][4][5].

Much of the DSP IP that exists for FPGA

implementation is designed to take advantage of the

resources available on these devices. One common resource

is the simple data register, which exists in large quantities

throughout the fabric. To utilise this resource, many of the

cores that exist within the EDA industry are pipelined to

increase data throughput. Pipelining on FPGAs effectively

costs nothing as the registers already exist within each

configurable cell. Thus, there is a tendency to use them

whenever possible. For data paths without feedback this can

result in fast, efficient designs. However, this is not the case

when data paths with feedback are considered.

This paper starts by considering the issues concerned

with pipelining a simple feedback loop. In Section 3 the

consequences of doing so are examined. Two hardware

designs using feedback, one with pipelining and one

without, which are algorithmically identical, are presented.

This comparison is used to show differences in speed, area

and power consumption and ultimately to reveal which

approach is best. In Section 4, a scenario where pipelining a

feedback loop offers some benefits is presented. This is

based on channel interleaving for a suitable multichannel

scenario and offers a low cost hardware solution for low

data-rate applications. Section 5 reviews the generic

outcomes of the work before the conclusions are presented

in Section 6.

2. PIPELINING A FEEDBACK LOOP

It is possible to pipeline a simple feedback loop while still

preserving the original algorithm. Figure 1 shows a

feedback loop with an adder and some logic containing no

registers. A single delay (reg 2) is required to synchronise

the feedback data with the new data as it arrives.

The maximum speed at which this device can be

clocked at is determined by the greatest delay between any

z-1

+
logic with

no registers

data-rate

clk @ fs

Figure 1: Simple feedback loop

clk @ fs

z-1

= fs

reg 1

reg 2

output @ fs

THE EFFECTS OF PIPELINING FEEDBACK LOOPS IN HIGH SPEED DSP SYSTEMS

Steven W. Alexander 1, Robert W. Stewart 2

1 Institute for System Level Integration, Alba Centre, Alba Campus, Livingston, EH54 7EG, UK

steven.alexander@sli-institute.ac.uk

2 EEE Department, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, UK

r.stewart@eee.strath.ac.uk

V - 1450-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

two connected registers. This delay represents the time it

takes for data to travel between two registers and thus limits

the clock speed. If the device is clocked faster than this

limit, data to be captured by the receiving register will arrive

after the clocking signal and so will not get registered. Thus,

the longest delay between two registers in a design is known

as the critical path. In Figure 1, the critical path is either the

connection between reg 1 and reg 2 or it could be the

feedback path connecting the output of reg 2 with its own

input.

Figure 2 illustrates a pipelined version of the

feedback loop shown in Figure 1, where it is assumed that

pipelining registers in the feedback logic block will reduce

the critical path. This circuit still represents the same

algorithm as the non-pipelined design. To achieve this the

registers in the feedback loop must be clocked at

. The pipelined registers need to be clocked rate

so that the feedback result arrives at the adder at the same

time as the next sample. However, now the critical path will

have been reduced as there are more registers in the data

path. This means that the maximum clock speed is now

increased. To determine the maximum data-rate at which

this circuit can operate with, the maximum clock rate must

be obtained and divided by n+1.

The simple question is then which of the two designs

is faster and what are the respective power and logic

resource requirements?

3. TO PIPELINE OR NOT TO PIPELINE?

To try to answer these questions, two circuits were designed

using HDL Design Studio. This tool is used for the design,

simulation and implementation of DSP systems on FPGAs.

The methodology is based on the professional DSP design

software, SystemView by Elanix [6], and uses a bit true

fixed-point library (FXP-Lib) which maps directly to

synthesiseable HDL code.

3.1. Givens Rotation With Feedback

The circuits designed were based on logic found in a QR

decomposition (QRD) using Givens rotations [1]. This

technique is used for RLS optimisation and has a wide range

of application to adaptive filtering. The QR algorithm can

be implemented using a parallel array of cells as illustrated

in Figure 3. Each cell in the array performs a Givens

rotation according to Eq. 1. However, the boundary cell on

each row differs from the other cells in that it must calculate

 and pass it along the row to the other cells (the Givens

Generation), as well as perform a Givens rotation itself.

Eq. 1

For the purpose of the experiment, a pipelined and a

non-pipelined implementation of this particular cell was

chosen. A schematic illustrating one implementation of a

boundary cell is shown in Figure 4. In this implementation,

rather than compute to pass onto the other cells in the

row, and are computed and passed on. The

other cells must then perform 4 multiplies, 1 addition and 1

subtraction to complete a Givens rotation. Eq. 2 shows the

relationship between the input vector (a,b) and the

calculated values and .

Eq. 2

n 1+ fs

z-1

+

logic with

z-n delay

clk @ (n+1)fs

data-rate

Figure 2: Simple feedback loop with pipelining

clk @ fs

z-1
= fs

output @ fs

i

a
/

a i b isin+cos=

b
/

b i a isin–cos=

Figure 3: QR-Update Array

0

0

0

boundary
cells

a

b

a/

b/

i i

z-1

i

icos isin

icos isin

a

b

icos

isin

a i b isin+cos

b i a isin–cos

icos

isin

z-1

0 Figure 4: QR-Update Boundary Cell

L
O
G
I
C

L
O
G
I
C

itan b a=

icos
1

1 itan2+

1

1 b a
2

+

------------------------------= =

isin i icostan
b a

1 b a
2

+

------------------------------= =

V - 146

➡ ➡

3.1.1. Non-Pipelined Design

Figure 5 illustrates the non-pipelined boundary cell

implemented using HDL Design Studio. The and

 components are computed using a combination of

division, multiplication, addition and square root tokens in

accordance with Eq. 2. The only register in the cell occurs

in the feedback loop and is used to synchronise the feedback

data with the next sample arriving. Note that the critical path

is highlighted by dashed arrows and follows the path of the

feedback loop.

3.1.2. Pipelined Design

The pipelined boundary cell is shown in Figure 6. Only the

two dividers and the square root tokens are pipelined and

combine to produce an overall delay of 86 samples. Thus,

the pipelined stages are clocked at .

Clocking at this speed is required to synchronise the

feedback result with the next sample arriving at the fs

data-rate thus maintaining the algorithm. The critical path in

this design is also highlighted by dashed arrows. Note how

much shorter it is compared to the non-pipelined design

thus allowing the clock speed to be higher.

3.2. Synthesis Results

The results from synthesising both boundary cell designs

are presented in Table 1. ISE 6.2.03i was used to target a

Virtex-II XC2V8000 device.

From these results the non-pipelined design is faster

(in terms of data throughput), uses less logic and consumes

less power than the pipelined device.

4. FILLING THE PIPELINE

The results from synthesis would suggest that there is no

reason to pipeline a feedback loop. However, there is

redundancy [2] in this structure that can be exploited,

making pipelining viable under certain conditions. The

pipeline, in the situation considered so far, never fills up

because a new sample must wait on the result of the

previous one before it can enter the pipeline. Thus, for a

single input data channel, a sample will enter the pipeline

and clock through each stage with nothing following it until

it has passed through completely. This means that the

majority of the logic is redundant for the majority of the

time.

An approach that exploits this redundancy is to share

the same structure with more than one input data channel

(i.e channel interleaving as in Figure 7). Here we assume

that the feedback loop has n pipeline stages. This means that

up to n independent input channels can share this hardware.

By multiplexing each input channel into the hardware, the

pipeline can be filled. As soon as the first sample enters the

pipeline and clears the first stage, a sample from another

channel can enter.

This architecture offers a low cost hardware solution

under the correct circumstances. Unless n input channels

exist to fill n pipeline stages then there will still be some

redundancy. Also, as n grows, the data-rate reduces, which

means that this structure is only useful for low data-rate

applications.

Figure 5: Non-Pipelined Boundary Cell

b

a

a cos i b sin i

b cos i a sin i = 0

z-1

cos i

sin i

icos

isin

Figure 6: Pipelined Boundary Cell

b

a
sin i

a cos i b sin i

b cos i a sin i = 0

z-34 z-34z-18

z-52

z-86

z-1

z-86

cos i

n 1+ 87= fs

Table 1: Synthesis Results

Design Slices
Max. Clk

Speed

Max. Data

Rate

Total Est.

Power Cons.

Pipelined 4672 45.55 MHz 523 kHz 902 mW

Non-Pipe 2046 2.755 MHz 2.755 MHz 787 mW

V - 147

➡ ➡

5. DISCUSSION

The synthesis results have demonstrated that with a single

data channel there is no reason to use pipelining in a

feedback loop. The purpose of pipelining is to speed up data

throughput, but clearly it has the opposite effect in this case.

Not only is the pipelined version slower, but it uses more

logic because of the extra registers and it consumes more

power because of the extra clocking requirements.

These findings can be explained further by

considering Figure 8. Here, a simple wire is shown, where

 represents the time it takes for a signal to travel from the

start to the finish. Figure 9 shows the same length of wire

but this time it has been pipelined with two registers. The

first register splits the wire in half so the time taken for the

signal to travel from the start to Reg 1 is . Reg 2 then

splits the remainder of the wire in half, thus is the time

taken for a signal to travel through each of the last two

sections. So far we have accounted for the time the signal

takes to travel through the 3 sections of wire. However,

there is some additional delay that must be accounted for

known as the setup and hold time [7]. The setup time is the

minimum amount of time that data must arrive at a register

before the clock signal if it is to be successfully latched.

Similarly, the hold time is the minimum amount of time that

data must be held for after a clock signal has arrived. Thus,

the minimum delay between data reaching a register and

getting latched is the accumulation of the setup and hold

time, known as . If the setup or hold time is breached,

then a situation known as metastability can occur where the

latched value cannot be predicted.

Accounting for of both registers, the total time to

travel along the wire becomes . Hence, it is clear

that pipelining has only served to increase the travel time.

This demonstrates that the shortest time for a signal to travel

along a wire occurs without pipelining.

6. CONCLUSIONS

This paper has shown that it is not always desirable to work

with IP that has been pipelined. In situations involving a

feedback loop it has been demonstrated that pipelined

designs produce slower data throughput, use more logic and

consume more power than a non-pipelined design. It has

also shown that a non-pipelined design offers the fastest

throughput possible and that a pipelined design cannot

match this because of the additional delay due to the setup

and hold time of each register in the pipeline.

A scenario that would benefit from using pipelined

IP in a feedback loop was presented. This involved channel

interleaving where the same pipelined feedback loop was

shared with several data channels all running at the same

data-rate. It was shown that for a pipeline with n stages, up

to n independent data channels could be interleaved to share

the same hardware and produce n independent output

channels. This architecture offers a low cost hardware

solution for low data-rate applications.

In summary, the conclusion that can be drawn from

this work is that engineers using DSP algorithm design tools

must fully understand the implications of working with

pipelined IP blocks when implementing algorithms that

require feedback.

7. ACKNOWLEDGMENTS

The authors wish to thank the Engineering and Physical

Sciences Research Council for their financial support

during this work.

8. REFERENCES

[1] Haykin S, Adaptive Filter Theory (2nd Edition). Prentice

Hall, Englewood Cliffs, NJ, 1990.

[2] Parhi K.K, VLSI Digital Signal Processing Systems: Design

and Implementation. Wiley-Interscience, 1999.

[3] http://www.xilinx.com/xlnx/xebiz/designResources/

ip_product_details.jsp?key=dr_dt_system_generator

[4] http://www.altera.com/products/software/products/dsp/

dsp-builder.html

[5] http://www.latticesemi.com/

[6] http://www.elanix.com/

[7] Wakerly J.F, Digital Design: Principles & Practices (3rd

Edition). Prentice Hall, Upper Saddle River, NJ, 2000.

+
logic with

z-n delay

clk @

Figure 7: Channel Interleaving

1
2

n

counter

1
2

n

counter

n input channels @ fs n output channels @ fs

3 3

n fs

Figure 8: A simple wire

Total time =

start finish

2

4

sh

sh

2 sh+

sh

Total time = 2 2 4 2 sh+ + 2 sh+=

sh

Reg 1 Reg 2

start finish

Figure 9: A pipelined wire

V - 148

➡ ➠

