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ABSTRACT

Current techniques for power-aware VLIW instruction schedul-
ing assumed that the power consumption parameters are precisely
known. In reality, there will always be some degree of imprecision.
In this paper, we propose to apply rough set theory to handle the
imprecision involved. Power consumption parameters are modeled
as rough variables and the power-balanced instruction scheduling
problem is formulated as a rough program. The effectiveness and
advantages of our approach is illustrated through examples.

1. INTRODUCTION

Advanced digital signal processors employ VLIW architectures
for demanding signal processing applications. Each long instruc-
tion word consists of one or more instructions that can be executed
in parallel on different functional units. These processors rely on
the compiler to schedule instruction at compile time to meet dead-
line as well as power constraints. Average power consumption re-
duction is known to be an important constraint for its great impact
on battery life and heat dissipation. Significant processor supply
current variations cause power supply noise, degrade chip relia-
bility and accelerate battery exhaustion. Hence power variation
reduction without compromising execution speed is another im-
portant instruction scheduling constraint in embedded VLIW sys-
tems.

Power-aware instruction scheduling refers to the task of pro-
ducing a schedule of these parallel instructions so that the average
power consumption is minimized or the power variation over the
execution of the program is minimized, while the deadline con-
straints are met. Previously published works in this area make use
of power consumption models with parameters that are assumed
to be precisely known [1, 2, 4, 5]. However, in reality, the values
of these parameters are not precise for two main reasons. Firstly,
physical measurements, which has been an important approach to
instruction-level power modelling and estimation for microproces-
sors [6–9], are always imprecise. The variations in the measured
values are using handled by using the mean or median of a large
number of measurements. Secondly, in order to reduce the com-
plexity of the power model, those instruction with consume similar
amounts of power are typically clustered together and given a the
same power figure [3]. While these approximations allow us to
optimize power consumption in the average sense, we are not able
to get any idea of the deviations from the average that may actually
occur.

There are several approaches to deal with imprecision or un-
certainty. In this paper, we propose to use the rough set theory [10]
approach to model the uncertainty inherent in the power model
parameters. The instruction scheduling problem can then be for-
mulated as a rough program [11]. One of the main advantages of

rough set is that it does not need any prior information on the data,
such as probability distributions in statistics, basic probability as-
signment in the Dempster-Shafer theory [12], or grade of member-
ship in fuzzy set theory [13].

This paper focuses on the optimization problem of VLIW in-
struction scheduling for power variation reduction and is an ex-
tension of our previous work [5]. The rest of the paper is orga-
nized as follows. Section 2 introduces a simple power model for
VLIW architectures. The mixed integer programming formula-
tion for this optimization problem is described in Section 3. Sec-
tion 4 presents the method for modelling the power consumption
parameters as rough variables based on measurements. Section 5
proposes a rough programming formulation for the optimization
problem of VLIW instruction scheduling for balanced power con-
sumption. Throughout this paper, we assume that an initial instruc-
tion schedule that meets the speed performance requirements has
been obtained through list or modulo scheduling [14]. Our algo-
rithm reschedules instructions for power variation optimization in
the second phase.

2. POWER MODEL

A VLIW processor with an issue width of k can execute at most
k instructions simultaneously on separate functional units. Each
instruction requires a different amount of time to execute. We di-
vide the time line into equal length time slots. A power cost pi

is associated with each instruction i which represents the average
power consumed by this instruction over the instruction execution.

Let the instruction schedule be N =< N1, N2, ..., Nt > where
Ni = (n1, n2, ..., nk) is the very long instruction word issued at
the i-th time slot of N . The power consumption at the i-th time slot
of schedule N is the sum of the power consumed by all the execut-
ing instructions, issued either at the i-th time slot or previous ones.
This can be expressed mathematically as

P i =
∑

1≤k≤i

∑
nj∈N(i−k+1)

pnj (1)

where nj is an executing instruction at the i-th time slot. Thus the
average power consumption over all t time slots is given by

M =

(
t∑

i=1

P i

)
/t (2)

The power deviation from the average value at any given time slot
i is

PV i = |P i − M | (3)
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Therefore, the total power deviation for a schedule is given by

PV =

t∑
i=1

PV i (4)

This is a rather simplified power model for the VLIW instruc-
tions. However, our techniques do not depend on a particular
power model. It can be easily be modified to work with more
sophisticated power models if they are available.

3. MIXED-INTEGER PROGRAM FORMULATION

The conventional mixed-integer program for the scheduling of VLIW
instructions for minimal power variations is given by P1 and effi-
cient techniques have been proposed to solve it [5].

P1: min f(X, ξ)
subject to

X = ∪ xk
i i = 1, ..., n; k = 1, ..., t

xk
i ∈ {0, 1} i = 1, ..., n; k = 1, ..., t

(5)

G(X) ≤ 0
L(X) = 0

(6)

where f(X, ξ) is the power variation of a given schedule X over
time which we seek to minimize, and ξ denotes the set of the power
consumption parameters. In (5), n is the number of instructions in
X and t is the number of time slots available. The binary decision
variables xk

i has a value of 1 if instruction i is rescheduled in time
slot k; otherwise its value is zero. G(X) ≤ 0 and L(X) = 0
in (6) denote the constraint matrix for processor-specific resource
constraints, data dependence constraints and performance deadline
constraints.

The basic problem with the above formulation is that the power
consumption parameters ξ in the objective function need to be pre-
cise values.

4. ROUGH VARIABLE REPRESENTATION OF POWER
CONSUMPTION PARAMETERS

The imprecision of the power consumption parameters can be en-
capsulated by expressing them as rough variables. Based on [11]
we shall define rough space and rough variables.

Definition 4.1 Let Λ be a nonempty set, A a σ-algebra of sub-
sets of Λ, ∆ an element in A, and π a set function satisfying the
following axioms:

1. π{A} ≥ 0 for any A ∈ A.

2. For every countable sequence of mutually disjoint events

{Ai}∞i=1, we have π{
∞⋃

i=1

Ai} =
∞∑

i=1

π{Ai}.

Then (Λ, ∆, A, π) is called a rough space.

Definition 4.2 A rough variable ζ is a function from the rough
space (Λ, ∆, A, π) to the set of real numbers such that for every
Borel set B of �, we have {λ ∈ Λ|ξ(λ) ∈ B} ∈ A.

Definition 4.3 The lower and the upper approximations of the
rough variable ζ are then defined as ζ = {ζ(λ)|λ ∈ ∆} and

ζ = {ζ(λ)|λ ∈ Λ} respectively.

Fig. 1. Data dependency graph for instructions in Example 4.1

A power consumption parameter pi can be formulated as a
rough variable ([a, b], [c, d]) with c ≤ a ≤ b ≤ d on the real
line where [a, b] is the lower approximation and [c, d] is the upper
approximation. This means that the power consumption values
within [a, b] is sure and that within [c, d] is possible. We can com-
pute these approximations for each pi ∈ ξ based on experimental
data in three steps:

1) Measurements: Conduct repeated measurements for each
pi ∈ ξ and collect the data. Principles for design of experiments
can be applied to reduce the impact of nuisance factors [15].

2) Discretization: Based on the obtained measurement data,
discretize the power consumption values on the real line according
an ”equal” relation defined as follows. Let S(x, y) be the measure
that quantifies the closeness between two power consumption val-
ues x and y. Then, x and y are similar when S(x, y) ≥ h, where
h ∈ [0, 1] is a similarity threshold value. The ”equal” relation R
based on this similarity measure is defined as

xRy ⇔ S(x, y) ≥ h

In determining the optimal similarity threshold value h, we need to
balance the requirements that 1) some ”equal” measurement data
are required to be categorized into the same pi as many as possi-
ble and 2) some measurement data categorized into the same pi

are required to be ”equal” as much as possible. After finding the
optimal similarity threshold value, the power consumption values
in real line are grouped into granules according to the ”equal” re-
lation.

3) Lower/upper approximations: For each pi ∈ ξ, compute
the lower and upper approximations according to the Definition 4.3.

Example 4.1 Consider the TMS320C6711 [16] which is a VLIW
digital signal processor. An initial performance optimized instruc-
tion schedule X1 consisting of fourteen instructions is given by

X1 = {x1
1, x

1
2, x

1
3, x

1
4, x

2
5, x

2
6, x

2
7, x

3
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

where the superscripts indicate the time slot in which the instruc-
tion is being scheduled. These fourteen instructions are { addaw,
add, addaw, add, ldw, mv, addaw, stw, b, addaw, cmpeq, stw, ldw,
b }. The data dependence graph as shown in Fig. 1.

To represent the set of power consumption parameters ξ =
{paddaw, padd, pldw, pmv, pstw, pb, pcmpeq} as rough variables,
we randomly conducted fifty repeated measurements for each pa-
rameter. Table 1 shows the data set for power parameter paddaw
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Table 1. Current readings(mA) of 50 measurements for paddaw.
206 208 203 197 208 210 204 202 203
191 191 204 203 201 194 212 211 199
205 194 210 209 198 212 196 197 194
197 203 201 212 207 200 203 205 203
203 200 190 196 206 196 206 205 204
205 196 198 195 202

Table 2. Discretized current readings of measurements for paddaw

[203,207) [207,214) [203,217) [190,198) [207,214)
[207,214) [203,207) [202,203) [203,207) [190,198)
[190,198) [203,207) [203,207) [198,202) [190,198)
[207,214) [207,214) [198,202) [203,207) [190,198)
[207,214) [207,214) [198,202) [207,214) [190,198)
[190,198) [190,198) [190,198) [203,207) [198,202)
[207,214) [207,214) [198,202) [203,207) [203,207)
[203,207) [203,207) [198,202) [190,198) [190,198)
[203,207) [190,198) [203,207) [203,207) [203,207)
[203,207) [190,198) [198,202) [190,198) [202,203)

consisting of 50 repeated measurements. Based the measured data,
the possible power consumption values on real line are discretized
and the lower and upper approximations for each power consump-
tion parameter are generated using the Rosetta Toolkit [17]. A
simple similarity measure since the current reading is the only nu-
merical attribute. It is given by

S(x, y) = d(xcurrent, ycurrent) = |xcurrent − ycurrent| (7)

where xcurrent and ycurrent are the current readings of two mea-
surements x and y. The partial discretization results correspond-
ing to Table 1 are shown in Table 2. The categorization rules are
shown in Table 4. According to these categorization rules, the
lower and upper approximations for each parameter are obtained.
They are shown in Table 3.

5. ROUGH PROGRAMMING FORMULATION

If ξ is a set of rough variables, then the values of the function
f(X, ξ) for any given X are also rough variables. The rough re-
turns of f(X, ξ) may be ranked by 1) the expected value E[f(X, ξ)];
2) the α-optimistic value f(X, ξ)sup(α) or the α-pessimistic value
f(X, ξ)inf (α), for some predetermined confidence level α ∈ (0, 1];
3) the trust measure Tr{f(X, ξ) > r} for some predetermined
level r. Based on the general framework of rough chance-constrained
programming (CCP) [11], we measure the rough return f(X, ξ)
for any decision X by its α-pessimistic value.

Definition 5.1 let ϑ be a rough variable, and α ∈ (0, 1]. Then

ϑinf (α) = inf{r|Tr{ϑ ≤ r} ≥ α} (8)

is called the α-pessimistic value to ϑ.

Table 3. Rough power consumption parameters in Example 4.1.
paddaw,padd,pmv ,pcmpeq pldw,pstw pb

(∅, [190, 214]) (∅, [214, 233]) (∅, [190, 207])

We specify the trust measure operator Tr in (8) as follows.

Definition 5.2 Let ϑ = ([a, b], [c, d]) be a rough variable with
c ≤ a < b ≤ d. Let r be a given value. We then have

Tr{ϑ ≤ r} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if c ≥ r
c

2(c−d)
, if a ≥ r ≥ c

2ac−ad−bc
2(b−a)(d−c)

, if b ≥ r ≥ a
d−2c

2(d−c)
, if d ≥ r ≥ b

1, if r ≥ d

f(X, ξ)inf (α) is the smallest value f satisfying Tr{f(X, ξ) ≤
f} ≥ α. This means that, for a given X , the rough return of
f(X, ξ) will be below the pessimistic value f with a confidence
level of α.

We can now formulate the VLIW power-balanced instruction
scheduling problem as a rough CPP. Solving this program involves
searching for the minimum α-pessimistic value f(X, ξ)inf (α)
among all feasible schedules X .

P2: min f(X, ξ)inf (α)
subject to

f(X, ξ)inf (α) = inf{f |Tr{f(X, ξ) ≤ f} ≥ α} (9)

X = ∪ xk
i i = 1, ..., n; k = 1, ..., t

xk
i ∈ {0, 1} i = 1, ..., n; k = 1, ..., t

(10)

G(X) ≤ 0
L(X) = 0

(11)

where α is the specified confidence level and ξ is the set of rough
power consumption parameters. (10) and (11) are the same as
those in the conventional formulation since there are no rough
variables involved. The optimal solution obtained from this for-
mulation is the schedule with the optimal α-pessimistic value of
the objective function f(X, ξ).

Example 5.1 Continuing from Example 4.1, suppose the confi-
dence level is α = 0.9. We have the following rough CPP model
for the scheduling problem:

min f(X, ξ)inf (0.9)
subject to

f(X, ξ)inf (0.9) = inf{f |Tr{f(X, ξ) ≤ f} ≥ 0.9} (12)

f(X, ξ) =
6∑

k=1

|P k − M |

M =

(
6∑

k=1

P k

)
/6

P k =
14∑

i=1

xk
i pi +

14∑
i=1

xk−1
i ε(Di − 1)pi

(13)

ξ = ∪ pi i = 1, ..., 14 (14)

X = ∪ xk
i i = 1, ..., 14; k = 1, ..., 6

xk
i ∈ {0, 1} i = 1, ..., 14; k = 1, ..., 6

(15)

G(X) ≤ 0
L(X) = 0

(16)

The rough power consumption parameters in (14) are given in Ta-
ble 3. In (13), Di is the delay slots of instruction i and ε(x) is
defined by

ε(x) =

{
1 if x ≥ 1
0 otherwise
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Table 4. Categorization rules for each power consumption parameter in Example 4.1.
current([203, 207)) => parameter(padd) OR parameter(pb) OR parameter(paddaw) OR parameter(pmv) OR parameter(pcmpeq)

current([207, 214)) => parameter(padd) OR parameter(paddaw) OR parameter(pmv) OR parameter(pcmpeq)
current([190, 198)) => parameter(padd) OR parameter(pb) OR parameter(paddaw) OR parameter(pmv) OR parameter(pcmpeq)
current([202, 203)) => parameter(padd) OR parameter(pb) OR parameter(paddaw) OR parameter(pmv) OR parameter(pcmpeq)
current([198, 202)) => parameter(padd) OR parameter(pb) OR parameter(paddaw) OR parameter(pmv) OR parameter(pcmpeq)

current([214, 234)) => parameter(pldw) OR parameter(pstw)

where x is an integer. G(X) ≤ 0 and L(X) = 0 in (16) denote the
constraint matrix for processor-specific resource constraints, data
dependence constraints and performance deadline constraints re-
spectively.

We use a hybrid intelligent algorithm [11] to solve the rough
program. The optimal schedule obtained is

Xop = {x1
1, x

1
2, x

4
3, x

1
4, x

2
5, x

4
6, x

1
7, x

3
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

The objective function f(X, ξ) has an optimal 0.9-pessimistic value
of 127. That is,

inf{f |Tr{f(Xop, ξ) ≤ f} ≥ 0.9} = 127 (17)

The results obtained in this example can be compared to one
obtained using the mixed-integer formulation in Section 3. In this
case, the median values of the measured data are used for the
power consumption parameters. The resulting optimal schedule
is also Xop as given in Example 5.1, but the optimal objective
function value is 121.

According to (17), the optimal power variation, which may
actually occur, is less than or equal to 127 with a confidence level
above 0.9. Therefore, the result obtained from the mixed integer
program of 121 falls within the range obtained by rough program-
ming. Hence it validates the rough programming result. In addi-
tion, the main advantage of the rough programming result is that it
indicates the deviations which can be expected.

6. CONCLUSIONS

Rough set theory has been applied to the problem of power-balanced
VLIW instruction scheduling. We showed how the ideas from
rough set theory can be used to model the imprecise power con-
sumption parameters as rough variables and formulated the schedul-
ing problem as a rough program. The advantages and effectiveness
of our approach has been demonstrated through examples. This
work is a first attempt to apply rough set theory to this area. Fu-
ture work involves the development of more efficient algorithms
to solve the rough programming model by exploiting the problem
specific structure.
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