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ABSTRACT
In this paper, a radix-2/16 decimation-in-frequency (DIF)

fast Fourier transform (FFT) algorithm and its higher radix
version, namely radix-4/16 DIF FFT algorithm, are pro-
posed by suitably mixing the radix-2, radix-4 and radix-
16 index maps, and combing some of the twiddle fac-
tors. It is shown that the proposed algorithms and the ex-
isting radix-2/4 and radix-2/8 FFT algorithms require ex-
actly the same number of arithmetic operations (multipli-
cations+additions). Moreover, by using techniques similar
to those introduced in this paper, it can be shown that all
the possible split-radix FFT algorithms of the type radix-
2r/2rs for computing a 2m-point DFT require exactly the
same number of arithmetic operations.

I. INTRODUCTION
The discrete Fourier transform (DFT) plays an important

role in digital signal processing applications. One of the
most interesting approaches for designing fast Fourier trans-
form (FFT) algorithms is that of the split-radix introduced
by Duhamel and Hollmann in [1], since it leads to algo-
rithms having a good compromise between the arithmetic
and structural complexities. In [1], the authors have claimed
that the computation of the odd terms of the split-radix DFT
through a radix-8 does not improve the algorithm. In [2],
the author has stated that “it can easily be checked out that
a 2/8-split-radix algorithm is worse than a 2/4-split-radix
algorithm from an arithmetic complexity point of view”.
In [3], the authors have claimed that the radix-2/4 FFT al-
gorithm for computing a 2m-point DFT is the best among
a general class of possible split-radix algorithms from the
point of view of arithmetic complexity. In 2001, Takahashi
[4] directly used the radix-8 in the computation of the odd
terms of the split-radix FFT. This, of course, led to an al-
gorithm with an increased arithmetic complexity. However,
efficient radix-2/8 FFT algorithms have been recently de-
veloped [5], [6] that require exactly the same number of
arithmetic operations as in the case of the radix-2/4 FFT
algorithm.

In this paper, we design two split-radix FFT algorithms,

radix-2/16 and radix-4/16 decimation-in-frequency (DIF)
FFT algorithms, using radix-2, radix-4 and radix-16 index
maps. By suitably mixing these index maps and combing
some of the twiddle factors, the proposed algorithms are
shown to require exactly the same number of arithmetic op-
erations as in the existing radix-2/4 and radix-2/8 FFT algo-
rithms.

II. PROPOSED RADIX-2/16 FFT ALGORITHM
The DFT of length N is defined by

X (n) =
N−1

∑
k=0

x(k)Wnk
N , 0 ≤ n ≤ N−1 (1)

where WN = exp(− j2π/N) and j =
√−1. The first stage

of the decomposition in the radix-2/4 DIF FFT algorithm
proposed in [1] consists of decomposing the N-point DFT
given by (1) into one N/2-point DFT given by

X (2n) =
N/2−1

∑
k=0

y0 (k)Wnk
N/2, 0 ≤ n ≤ N

2
−1 (2)

and two N/4-point DFTs given by

X (4n+q)=
N/4−1

∑
k=0

yq (k)Wqk
N Wnk

N/4, 0≤ n≤ N
4
−1, q = 1, 3

(3)
where

y0 (k) = x(k)+ x

(
k+

N
2

)
, (4)

yq (k) =
(

x(k)− x

(
k+

N
2

))

+(− j)q
(

x

(
k+

N
4

)
− x

(
k+3

N
4

))
(5)

In order to develop a radix-2/16 DIF FFT algorithm, we fur-
ther decompose the odd-indexed terms given by (3) using
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the radix-4 index maps. This enables us to express the odd-
indexed terms by

X (16n+α) =
N/16−1

∑
k=0

gα (k)Wnk
N/16, 0 ≤ n ≤ N

16
−1,

α = 1, 5, 9, 13, 3, 7, 11, 15 (6)

The input sequences of the eight N/16-point DFTs given by
(6) can be expressed as

⎡
⎢⎢⎣

gq (k)
gq+4 (k)
gq+8 (k)
gq+12 (k)

⎤
⎥⎥⎦ = Tk,q

⎡
⎢⎢⎣

yq (k)
yq

(
k+ N

16

)
yq

(
k+ N

8

)
yq

(
k+3 N

16

)
⎤
⎥⎥⎦ ,

0 ≤ k ≤ N
16

−1, q = 1, 3 (7)

where

Tk,q =

⎡
⎢⎢⎢⎣

Wqk
N 0 0 0

0 W (q+4)k
N 0 0

0 0 W (q+8)k
N 0

0 0 0 W (q+12)k
N

⎤
⎥⎥⎥⎦W4.

.

⎡
⎢⎢⎢⎣

1 0 0 0

0 WqN/16
N 0 0

0 0 WqN/8
N 0

0 0 0 Wq3N/16
N

⎤
⎥⎥⎥⎦ (8)

and the matrix W4 is the operator of the 4-point DFT.
Finally, the proposed radix-2/16 DIF FFT algorithm con-

sists of decomposing the N-point DFT given by (1) into one
N/2-point DFT given by (2) and eight N/16-point DFTs
given by (6). This process is repeated successively for each
of the new resulting DFTs until some 8-, 4-, or 2-point DFTs
need to be computed. The flowgraph of the general butterfly
of the proposed radix-2/16 DIF FFT algorithm can easily be
obtained using (4), (5), and (7). Due to lack of space, the
flowgraph of the butterfly is not given in this paper. For
given values of k, k �= 0, and q, the twiddle factor matrix
given by (8) introduces six complex multiplications and a

multiplication by the twiddle factor WqN/8
N in the compu-

tation of (7). However, for k = 0, the number of complex
multiplications reduces to two. Thus, the butterfly corre-
sponding to k = 0 can be considered as a special butterfly.
In order to further reduce the number of operations, we in-
troduce a new special butterfly for k = N

32 by using the fact

that Wαk
N =W (α−q)k

N Wqk
N and combining some of the twiddle

factors in (8). Then, for k = N
32 , (8) can be expressed as

Tk,q =

⎡
⎢⎢⎣

1 0 0 0
0 W 4k

N 0 0
0 0 W 8k

N 0
0 0 0 W 12k

N

⎤
⎥⎥⎦W4.

.

⎡
⎢⎢⎢⎣

Wqk
N 0 0 0

0 Wqk
N WqN/16

N 0 0

0 0 Wqk
N WqN/8

N 0

0 0 0 Wqk
N Wq3N/16

N

⎤
⎥⎥⎥⎦ ,

k =
N
32

, q = 1, 3 (9)

Now, it is clear that for a given value of q, (9) introduces
only four complex multiplications and multiplications by

WN/8
N and W 3N/8

N in the computation of (7).

III. PROPOSED RADIX-4/16 FFT ALGORITHM
The length N is assumed to be an integral power of four.

Let us first start by carrying out a DIF decomposition of (1)
using the radix-4 index maps. This provides in the first stage
four N/4-point DFTs given by

X (4n+q) =
N/4−1

∑
k=0

ỹq (k)Wqk
N Wnk

N/4, 0 ≤ n ≤ N
4
−1,

q = 0, 1, 2, 3 (10)

where the sequences yq (k), for q = 0, 1, 2 and 3, are given
by ⎡

⎢⎢⎣
ỹ0 (k)
ỹ1 (k)
ỹ2 (k)
ỹ3 (k)

⎤
⎥⎥⎦ = W4

⎡
⎢⎢⎣

x(k)
x(k+N/4)
x(k+N/2)
x(k+3N/4)

⎤
⎥⎥⎦ (11)

The decomposition of (1) into the DFTs given by (10) is
recognized as the first stage of the well-known radix-4 DIF
FFT algorithm. In order to develop a radix-4/16 DIF FFT
algorithm, we further decompose the DFTs corresponding
to q = 1, 2 and 3 in (10) using the radix-4 index maps. This
enables us to write

X (16n+α) =
N/16−1

∑
k=0

g̃α (k)Wnk
N/16, 0 ≤ n ≤ N

16
−1,

α = 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 (12)

The input sequences of the twelve N/16-point DFTs given
by (12) can be expressed as⎡

⎢⎢⎣
g̃q (k)

g̃q+4 (k)
g̃q+8 (k)
g̃q+12 (k)

⎤
⎥⎥⎦ = Tk,q

⎡
⎢⎢⎣

ỹq (k)
ỹq

(
k+ N

16

)
ỹq

(
k+ N

8

)
ỹq

(
k+3 N

16

)
⎤
⎥⎥⎦ ,

0 ≤ k ≤ N
16

−1, q = 1, 2, 3 (13)
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Finally, the proposed radix-4/16 DIF FFT algorithm con-
sists of decomposing the N-point DFT given by (1) into one
N/4-point DFT corresponding to (10) for q = 0 and twelve
N/16-point DFTs given by (12). This decomposition pro-
cess is repeated successively for each of the new resulting
DFTs until only 4-point DFTs need to be computed. The
flowgraph of the general butterfly of the proposed radix-
4/16 DIF FFT algorithm can easily be obtained using (11)
and (13). Again, due to lack of space, the flowgraph of the
butterfly is not given. For a given value of k, k �= 0, (13)
requires six complex multiplications and a multiplication

by WN/8
N or W 3N/8

N for q =1 or 3, whereas only four com-

plex multiplications along with multiplications byW N/8
N and

W 3N/8
N are required for q = 2. However, for k = 0, the num-

ber of complex multiplications reduces to two for q =1 or 3,
whereas no complex multiplications is required for q = 2.
Thus, the butterfly corresponding to k = 0 can be consid-
ered as a special butterfly. In order to further reduce the
number of operations, we introduce a new special butterfly
for k = N

32 by using a technique similar to that presented in
Section II. Then, for q =1 and 3, (13) can be computed ef-
ficiently using the matrix T N

32 ,q given by (9). However, for
q = 2, we rearrange the matrix given by (8) as

Tk,2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 W 8k

N 0
0 0 0 W 8k

N

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎦ .

.

⎡
⎢⎢⎢⎣

W 2k
N 0 0 0

0 W 2k
N WN/8

N 0 0
0 0 W 6k

N 0

0 0 0 − jW 6k
N WN/8

N

⎤
⎥⎥⎥⎦ .

.

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

0 0 WN/4
N 0

0 0 0 WN/4
N

⎤
⎥⎥⎦ ,

k =
N
32

(14)

Now, it is clear that for k = N
32 and q =1 or 3, (13) requires

only four complex multiplications along with multiplica-

tions by WN/8
N and W 3N/8

N . For q = 2, (13) requires only
four complex multiplications.

IV. ARITHMETIC COMPLEXITIES OF THE
PROPOSED ALGORITHMS

In the proposed radix-2/16 FFT algorithm, the first stage
of the decomposition is carried out, as discussed in Section
II, by repeating

(
N
16 −2

)
times the general butterfly and the

two special butterflies corresponding to k = 0 and k = N/32.

It can be shown that the expressions for the numbers of real
multiplications and real additions required by the proposed
radix-2/16 algorithm for the computation of a length-N DFT
are

M42
N = 52

N
16

−44+M42
N/2 +8M42

N/16,

M42
16 = 24, M42

8 = 4, M42
4 = M42

2 = 0 (15)

A42
N = 60

N
16

−20+3N +A42
N/2 +8A42

N/16,

A42
16 = 144, A42

8 = 52, A42
4 = 16, A42

2 = 4 (16)

if a complex multiplication is performed using four
real multiplications and two real additions (4mult-2add
scheme). The corresponding expressions are

M33
N = 40

N
16

−32+M33
N/2 +8M33

N/16,

M33
16 = 20, M33

8 = 4, M33
4 = M33

2 = 0 (17)

A33
N = 72

N
16

−32+3N +A33
N/2 +8A33

N/16,

A33
16 = 148, A33

8 = 52, A33
4 = 16, A33

2 = 4 (18)

if a complex multiplication is performed using three
real multiplications and three real additions (3mult-3add
scheme).

In the first stage of the proposed radix-4/16 FFT algo-
rithm, the decomposition of the N-point DFT is achieved,
as discussed in Section III, by repeating

(
N
16 −2

)
times the

general butterfly and the two special butterflies correspond-
ing to k = 0 and k = N/32. Again, it can be shown that the
expressions for the numbers of real multiplications and real
additions required by the proposed radix-4/16 algorithm are

M42
N = 72

N
16

−64+M42
N/4 +12M42

N/16,

M42
16 = 24, M42

4 = 0 (19)

A42
N = 88

N
16

−32+4N +A42
N/4 +12A42

N/16,

A42
16 = 144, A42

4 = 16 (20)

if the 4mult-2add scheme is considered. The corresponding
expressions are

M33
N = 56

N
16

−48+M33
N/4 +12M33

N/16,

M33
16 = 20, M33

4 = 0 (21)

A33
N = 104

N
16

−48+4N +A33
N/4 +12A33

N/16,

A33
16 = 148, A33

4 = 16 (22)
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if the 3mult-3add scheme is considered,.
The arithmetic complexities of the proposed radix-2/16

and radix-4/16 FFT algorithms are compared to those of the
existing radix-2/4 [1], [7] and radix-2/8 [5], [6] FFT algo-
rithms in Tables I, II and III. It is clear from these tables
that the four algorithms require exactly the same number of
arithmetic operations (multiplications+additions) irrespec-
tively of whether the 4mult-2add or 3mult-3add scheme is
used. If the 3mult-3add scheme is used, the four algorithms
have, in addition, the same number of multiplications. How-
ever, in the case of the 4mult-2add scheme, the radix-2/8
algorithm requires the lowest number of multiplications. It
should be pointed out that the radix-2/4 algorithm requires
one general butterfly and two special butterflies correspond-
ing to k = 0 and k = N/8. The radix-2/8 algorithm also re-
quires one general butterfly and two special butterflies cor-
responding to k = 0 and k = N/16. By defining a special
butterfly for k = N/64 and using a technique similar to that
introduced in this paper for combining the twiddle factors,
it can be shown that the number of arithmetic operations re-
quired by the radix-2/32 FFT algorithm is identical to that
required by any other split-radix FFT. Similar results can be
established for all the possible split-radix FFT algorithms of
the type radix-2r/2rs.

V. CONCLUSION
In this paper, we have shown that by using a mixture of

radix-2, radix-4 and radix-16 index maps in the decomposi-
tion of the DFT, and suitably combining some of the twiddle
factors, the resulting radix-2/16 and radix-4/16 FFT algo-
rithms require exactly the same number of arithmetic op-
erations as in the existing radix-2/4 or radix-2/8 FFT algo-
rithms. Finally, using techniques similar to those introduced
in this paper, it can be shown that all the possible split-radix
FFT algorithms of the type radix-2r/2rs for computing a 2m-
point DFT require exactly the same number of arithmetic
operations.
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TABLE I
NUMBER OF MULTIPLICATIONS USING

THE 4MULT-2ADD SCHEME

N Radix-2/4 Radix-2/8 Radix-2/16 Radix-4/16

16 24 24 24 24

32 84 84 84

64 248 240 248 248

128 660 636 652

256 1656 1592 1632 1624

512 3988 3812 3924

1024 9336 8896 9192 9144

2048 21396 20364 21020

4096 48248 45832 47344 47000

TABLE II
NUMBER OF ADDITIONS USING THE 4MULT-2ADD SCHEME

N Radix-2/4 Radix-2/8 Radix-2/16 Radix-4/16

16 144 144 144 144

32 372 372 372

64 912 920 912 912

128 2164 2188 2172

256 5008 5072 5032 5040

512 11380 11556 11444

1024 25488 25928 25632 25680

2048 56436 57468 56812

4096 123792 126208 124696 125040

TABLE III
ARITHMETIC COMPLEXITIES USING

THE 3MULT-3ADD SCHEME

Radix-2/4 FFT, Radix-4/16

Radix-2/8 FFT FFT

and Radix-2/16 FFT

N Mults. Adds. Mults. Adds.

16 20 148 20 148

32 68 388

64 196 964 196 964

128 516 2308

256 1284 5380 1284 5380

512 3076 12292

1024 7172 27652 7172 27652

2048 16388 61444

4096 36868 135172 36868 135172
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