
MODELING IMAGE PROCESSING SYSTEMS WITH HOMOGENEOUS PARAMETERIZED

DATAFLOW GRAPHS

Mainak Sen1, Shuvra S. Bhattacharyya1, Tiehan Lv2, Wayne Wolf2

1{mainak,ssb}@eng.umd.edu

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD, 20742, USA.
2lv@ee.princeton.edu, wolf@princeton.edu

Department of Electrical Engineering,

Princeton University, Princeton, NJ, 08544, USA.

ABSTRACT

In this paper, we describe a new dataflow model called

homogeneous parameterized dataflow (HPDF). This form of

dynamic dataflow graph takes advantage of the fact that in a large

number of image processing applications, data production and

consumption rates, though dynamic, are equal across graph edges

for any particular iteration, which leads to a homogeneous rate of

actor execution even though data production and consumption val-

ues are dynamic and vary across graph edges. We discuss existing

dataflow models and formulate in detail the HPDF model. We

develop examples of applications that are described naturally in

terms of HPDF semantics and present experimental results that

demonstrate the efficacy of the HPDF approach.

1. PREVIOUS WORK

Real-time multimedia applications are an integral part of
embedded systems technology. Modeling such applications using
dataflow graphs can lead to useful formal properties, such as
bounded memory requirements, and efficient synthesis solutions
(e.g, see [2]). The synchronous dataflow (SDF) model for example
has particularly strong compile time predictability properties [6].
However, this model is highly restrictive and cannot handle data-
dependent execution of dataflow graph vertices (actors). There
have been previous studies on extensions of SDF to provide for
more flexible actor execution, including handling of such dynamic
execution capabilities. For example, a cyclo-static dataflow
(CSDF) [3] graph can accommodate multiphase actors with differ-
ent consumption and production rates at the input and output,
respectively, at different phases of iteration. This provides for
more flexibility but does not permit data dependent production or
consumption patterns. Another extension known as the token flow
model [4] was proposed in which we can have dynamic actors
where the number of data values (tokens) transferred across a
graph edge may depend on the run-time value of a token that is
received at a “control port” of an incident actor. A meta-modeling
technique called parameterized dataflow [1] (PSDF) was proposed
later in which dynamic dataflow capability was formulated in
terms of run-time reconfiguration of actor and edge parameters.
We elaborate further on the PSDF model in the following section.

2. PARAMETERIZED DATAFLOW MODELING

We discuss in brief the parameterized dataflow model
proposed in [1]. Parameterized dataflow is a meta-modeling tech-
nique. It can be applied to any underlying base dataflow model
that has a well-defined notion of a graph iteration. The model
increases the expressive power of the base model by providing for
run-time reconfigurability of actor and edge parameters in a cer-
tain way. When parameterized dataflow is applied to SDF as the
base model, the resulting parameterized synchronous dataflow

(PSDF) model can be viewed as an augmentation of SDF that
incorporates run-time reconfiguration of parameter configurations
for actors and edges.

An actor in PSDF is characterized by a set of parameters
 that control the actor’s functionality and dataflow

behavior. Each parameter is either assigned a value from a set of
viable values or left unspecified. These unspecified parameters are
assigned values at run-time through a disciplined run-time recon-
figuration mechanism. Techniques have been developed to execute
PSDF graphs efficiently through carefully constructed quasi-static
schedules (schedules for dynamic dataflow graphs in which a sig-
nificant portion of sequencing decisions are fixed at compile time)
[1].

PSDF specifications are built up in a modular way in terms
of hierarchical subsystems. Every subsystem is in general com-
posed of three subgraphs, called the init, subinit and body graphs.
New parameter values to use during run-time reconfiguration are
generally computed in the init and subinit graphs, and the values
are propagated to the body graph, which represents the computa-
tional core of the associated PSDF subsystem. The init graph is
invoked at the beginning of each invocation of the (hierarchical)
parent graph and the subinit graph is invoked at the beginning of
each invocation of the associated subsystem followed by the body
graph.

3. GENERIC MODEL FOR HIERARCHICAL

RECONFIGURATION OF DATAFLOW GRAPHS

Parameterization is a widely-used method to implement
dynamic behavior of a dataflow graph. But a parameterized actor
might also have a predetermined production and consumption rate.
For example, an FIR filter might have its number of taps as a
parameter, which does not affect the production consumption rate.
In this paper, we discuss parameters in the context of actors whose
token production and consumption rates are a function of these
parameters. In [9], the authors develop a mathematical model to
represent the reconfiguration of various types of dynamic dataflow
graphs. The model allows reconfiguration at all levels of hierar-
chy. A hierarchical reconfiguration model is represented by a con-
tainment tree, which has a finite set of actors in it. Non-leaf nodes
are composite actors and leaf elements are atomic actors. The
behavior of a composite actor is given by the actors that are its
direct children. Every actor has its own set of parameters which
define its behavior and there is a one-to-one relation between the
parameters and actors. Dependencies among parameters are
expressed explicitly through a domain function and its value is
constrained by a constraint function. A dependent parameter must
at all times satisfy the constraint function to become consistent.
An independent parameter has null in its domain function.

The authors introduce specific points in their model
called quiescent points, which are constrained points in the execu-

A
params A

V - 1330-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

tion model where change of parameter values are permitted. These
points occur between firings and an actor cannot communicate or
perform computation at these points. A precedence relation is set
that performs partial ordering of quiescent points of all the actors.
At each quiescent point, a set of independent parameters is cho-
sen for reconfiguration and all the parameters dependent on are
also reconfigured based on their initial and reconfigured values.
Parameters that cannot be reconfigured or can be changed only at
certain quiescent points are declared as constant parameters. A
constant parameter can be forced to remain constant either during
one particular execution of the model or over firings of the associ-
ated actor. To statically analyze the reconfiguration of a model,
two methodologies have been suggested. Firstly, all the executions
of the model are checked along with all possible reconfigurations
and any invalid reconfiguration predicts invalidity of the model.
Secondly, the authors suggest a least change context for every
parameter which is a conservative estimate of the actors
affected by . This helps in easy semantic constraint checking.

4. HOMOGENEOUS PARAMETERIZED DATA-

FLOW MODEL (HPDF)

In this section we develop the HPDF model, which like
parameterized dataflow is a meta-modeling technique in that it can
be applied to different dataflow base models. We present the char-
acteristics of the actors, edges and delay buffers in an HPDF
graph.

4.1 HPDF Model Definition

An HPDF subsystem is homogeneous in two ways.
First, unlike general SDF graphs and other multirate models, the
top level actors in an HPDF subsystem execute at the same rate.
Second, unlike the hierarchical parameterized dataflow semantics,
reconfiguration across subsystems can be achieved without intro-
ducing hierarchy (i.e., across actors that are at the same level of the
modeling hierarchy) when it is more natural to do so. At the same
time, hierarchy can be used when desired.

HPDF is a meta modeling technique. Composite actors in an
HPDF model can be refined using any dataflow modeling seman-
tics that provides a well-defined notion of sub-system iteration. So
the composite HPDF actor might have SDF, CSDF, PSDF or
MDSDF [7] actors as its constituent actors.

HPDF edges can have non-unity delays (initial tokens) on
them as in other dataflow models. Furthermore, the stream of
tokens that is passed across an edge needs markers of some kind to
indicate the “packets” that correspond to each iteration of the pro-
ducing/consuming actors. An end-of-packet marker is used for this
purpose in our implementation.

Interface actors in HPDF can produce and consume arbitrary
amounts of data, while the internal connections must, for fixed
parameter values, obey the constraints imposed by the base model.
An HPDF source actor in general has access to a variable number
of tokens at its inputs, but it obeys the semantics of the associated
base model on its output. Similarly, an HPDF sink actor obeys the
semantics of its base model at the input but can produce a variable
number of tokens on its output.

Unlike PSDF, HPDF always executes in bounded memory
whenever the component models execute in bounded memory.

4.2 Comparison of HPDF and PSDF

As we mentioned in Section 4.1, in HPDF we do not
have to introduce hierarchy in the form of subsystems to account
for dynamic behavior of actors. Suppose a dynamic source actor

 produces tokens that are consumed by the dynamic sink actor
. In PSDF, we need to have and in different subsystems;

the body of would set the parameter which will be a known
quantity at that time, in subinit of . This hierarchy can be
avoided in HPDF as we assume that data is produced and con-
sumed in same-sized blocks. As we will describe further in Section
5, this simple form of dynamicity has many applications in signal,
image and video processing algorithms. It therefore deserves
explicit, efficient support as provided by HPDF.

5. APPLICATIONS

In this section, we discuss interesting applications of
HPDF in real-time video analysis for gesture recognition and face
detection.

5.1 A Gesture Recognition Algorithm

Figure 1 shows a part of the algorithm flow to identify
body parts and categorize their movements in a succession of
images as described in [11]. ‘Region finding’ eliminates the back-
ground and separates skin-tone and non-skin tone foregrounds
from the input image file. ‘Contour following’ generates a contour
for each of the regions in the foreground based on the regions
found in the previous step. ‘Ellipse fitting’ fits an ellipse to each of
the contours. ‘Graph matching’ identifies various body parts by
comparing the group of ellipses with a library of graphs.

The above mentioned algorithm is dynamic as far as the
production and consumption of data among various blocks is con-
cerned. To analyze the dynamicity, we concentrate on the blocks

Q
Q

p
p

A n
B A B

A n
B

Region

finding

Contour

following
Ellipse

fitting

Graph

matching

Figure 1. Top level representation of the video analysis algo-

rithm.

Contour1

Contour2

SpecA

Figure 2. ‘Contour following’ is composed of these actors.

Contour1 and Contur2 take one image as input and output N

regions. SpecA is a specifier.

EllipseSu

per1

SetLast1 Filter

EllipseSup

er2
SetLast2

Figure 3. ‘Ellipse fitting’ is composed of the actors shown

above. Filter takes one token as input and outputs zero or one

token.

V - 134

➡ ➡

that input and output variable amounts of data that can only be
determined during runtime. The ‘region finding’ block takes two
images as input and outputs a background subtracted skin-toned
image. Therefore the input and output production/consumption
rates of this block are static. ‘Contour following’ takes the skin-
toned image as input and outputs regions corresponding to the
number of contours it can find. is understandably determined
during run-time. ‘Ellipse fitting’ has a filter that takes one token as
input. The token contains an array of numbers. Zero or one tokens
are output depending on whether the first element of the input
array is zero. ‘Graph matching’ takes all the ellipses that were fit-
ted on the contours before it looks for a match in the library of
graphs.

Thus, the edges in Figure 1 between ‘Contour following’
and ‘Ellipse fitting’ and between ‘Ellipse fitting’ and ‘Graph
matching’ have variable amounts of data that depend on the input
image. Also ‘Graph Matching’ has to wait until all the fitted
ellipses are available before it can execute. The HPDF model is
well suited for this kind of dataflow. The idea is that each of the
modules in Figure 1 can be made to execute at the same rate pro-
ducing correct output, so they are homogeneous in this sense. To
ensure homogeneity in firings, we effectively wrap the variable
number of tokens produced in the dynamic actors in one token and
use it as a variable-size vector token in our implementation.

5.2 HPDF Model for the Application

We implemented the HPDF model along with the ges-
ture recognition system in the Ptolemy II framework [5], which is
a popular design tool for experimenting with models of computa-
tion in embedded system design. The application in the top level
representation of our implementation has four composite (hierar-
chical) actors, namely Region, Contour, Ellipse and Match. Each
composite actor has its own “director,” which is the software mod-
ule in Ptolemy II that effectively implements the associated model
of computation, which in this case is an SDF director for all four of
the composite actors. In general, each composite actor can have a
different director (SDF, CSDF, MDSDF, etc.).

In Figure 4, represent Region, Contour,
Ellipse, and Match, respectively. Figure 5 shows the HPDF graph
of the image processing algorithm with the hierarchy flattened. As
already mentioned, the contour module produces a dynamic
amount of data because it outputs the number of contours it finds

in the input image, which is image-dependent and therefore cannot
be determined statically. For the input images we applied in our
experiments, the contour actor produces three regions.

Now consider the scheduling process for the system in Fig-
ure 4. Denote by the number of regions output by the contour
actor (again, this is a quantity that may vary from iteration to itera-
tion). Ellipse consumes the regions and produces ellipses that
fit them. Match requires all the ellipses before it can execute.
All the other edges produce and consume one data unit per firing.
We pass the dynamic amount of data as a single vector token, so

 produces one vector token of length and produces one
vector token of length . So the schedule of the graph would
be . However, to expose more parallelism, it is efficient to
decompose into the refined subsystem shown in Figure 6. Here,

 represents an actor which tries to fit an ellipse to each contour
it receives at its input - thus outputs one token (ellipse in our case)
on success and zero token on failure.

Taking all of this into consideration, a valid quasi-static
schedule, which is similar to the form of a parameterized looped
schedule [1], for is , where the parenthesized term

 represents a loop that repeats iterations of .

5.3 A Face Detection Algorithm

We also modeled an image-based face detection algo-
rithm [8] summarized using HPDF to further demonstrate the effi-
cacy of the HPDF modeling approach.

N
N

Figure 4. HPDF model of the application with parameterized

token production and consumption rate of C and E shown with

 and , respectively.n p

R C ME
n p1 1

Figure 5. The HPDF graph of the above application with flat-

tened hierarchy for C, E and M in Ptolemy II.

R C E M

n

n p
p

C n E
p

RCEM
E

E

E
1 1

E1 1/0

 sized vectorn sized vectorp

Figure 6. Inside of actor . consumes one token per

invocation and produces either one or zero tokens.

E E

RC nE M
nE n E

Downsampler

Image (M x N)

M x N
M/2 x N/2 M/4 x N/4 M/8 x N/8

Preprocessor

Ellipse Detector

Reduce Multiple Detector

Output Image with

face boundaries

Figure 7. A face detection algorithm. Processing with down-

sampled images not shown explicitly.

Facial Feature Analyzer

V - 135

➡ ➡

The algorithm assumes that the facial feature analyzers
are trained with an extensive set of data for recognizing features in
faces. The downsampler takes care of zoomed-in faces. For each
zoomed-in image, we perform zero mean and contrast enhance-
ment — collectively shown as preprocessing in Figure 7. In
‘Ellipse Detector’, we break the image into windows of the size of
faces that were used to train the classifiers and look for ellipses.
This breaking down simulates the sequential sliding window in the
parallel domain. The number of ellipses detected is dynamic as it
depends on the input image. In the ‘Reduce Multiple Detector’, we
remove some of the ellipses with close features to some existing
ellipses, suggesting that the same ellipses were detected multiple
times. All the ellipses can be given to the ‘facial feature analyzer’,
which outputs a binary value of or if the trained analyzer
detects a face or not, respectively. The output of the algorithm is
the original image with face boundaries marked with rectangles.

5.4 HPDF model for face detection algorithm

We modeled the application shown in Figure 7 in HPDF.
The resulting model represents the face detection algorithm for
one particular scaling of the input image in HPDF as shown in Fig-
ure 8. represent the downsampler, pre-
processor, ellipse detector, reduce multiple detector and facial
feature analyzer, respectively. The output of is a downsam-
pled image of size where , , is any
integer and are the length and width of the original image in
pixels. is parameterized since the number of outputs from it
depend on the input image. The output of is a vector of size
where is number of ellipses the algorithm finds in the input
image. The output of is a vector of length where each
entry signifies a unique ellipse detected. outputs a vector of
length with all the locations of detected faces in the input image.

6. IMPLEMENTATION RESULTS

We developed a Texas Instruments (TI) programmable
digital signal processor implementation of the HPDF model of the
gesture recognition algorithm described in section 5.1. We evalu-
ated this implementation on TI Code Composer Studio version 2
for the C’6xxx family of programmable DSP processors. The
application when implemented with our HPDF model for a C64xx
fixed point DSP processor has a runtime of 21405671 cycles and
with a clock period of 40 ns, the execution time was calculated to
be 0.86 sec. The scheduling overhead for the implementation is
minimal as the HPDF representation inherently leads to a highly
streamlined quasi-static schedule as described in Section 5.2. The
worst case buffer size for an image of 348 X 240 pixels was 184
kilobytes on the edge between region and contour, 642 Kb
between contour and ellipse and 34 Kb between ellipse and match
for at total of 860 kilobytes. The original code (without modeling)
had a runtime of 27741882 cycles and with the same clock period
of 40ns, the execution time was 1.11 sec. So our model improved
the execution time by 23 percent.

7. CONCLUSION

This paper has developed HPDF, an efficient meta-mod-

eling technique for capturing a commonly-occurring, restricted
form of dynamic dataflow relevant to image processing applica-
tions. Applications that exhibit data-dependent token traffic and
have an aggregating actor in the later stage of the algorithm to
combine results appear to fit the HPDF paradigm particularly well.
For example, in a number of image processing applications, the
image is divided into smaller subimages for faster implementation,
each subimage leads to a data-dependent volume of data produc-
tion, and the produced data from all of the subimages is combined
later to get the final result. HPDF captures the inherent dataflow
structure in such applications without going into more complicated
hierarchical representations or into more general dynamic data-
flow modeling approaches where key analysis and synthesis prob-
lems become impossible to solve exactly. Also HPDF models can
be synthesized into efficient software implementations through
low overhead quasi-static schedules. Useful directions for future
work include exploring the automated derivation of efficient, syn-
thesizable hardware implementations from HPDF representations,
for example, using the hardware synthesis framework developed
earlier [10].

8. ACKNOWLEDGEMENTS

This research was supported by grant number 0325119 from
the U. S. National Science Foundation. The authors are thankful to
Vikas Raykar and Gaurav Aggarwal for helping out with the face
detection algorithm.

9. REFERENCES

[1] B. Bhattacharya, S. S. Bhattacharyya. Parameterized Dataflow

Modeling for DSP Systems. IEEE Transactions on Signal Process-

ing. 49(10):2408-2410, October 2001.

[2] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software

synthesis and code generation for DSP. IEEE Transactions on Cir-

cuits and Systems — II: Analog and Digital Signal Processing,

47(9):849-875, September 2000.

[3] G Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.

Cyclo-Static Dataflow. IEEE Transactions on Signal Processing.

Vol 44, No 2, February 1996.

[4] J. T. Buck. A Dynamic Dataflow Model Suitable for Efficient

Mixed Hardware and Software Implementations of DSP Applica-

tions. Proceedings of the 3rd international workshop on Hard-

ware/software co-design. Pages 165-172, 1994.

[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.

Neuendorffer, S. Sachs and Y. Xiong. Taming heterogeneity - the

ptolemy approach. Proceedings of the IEEE, January 2003.

[6] E. Lee and D. Messerschmitt. Synchronous Data Flow. Pro-

ceedings of the IEEE, pages 55–64, September 1987

[7] E. A. Lee. Multidimensional Streams Rooted in Dataflow. Pro-

ceedings of the IFIP Working Conference on Architectures and

Compilation Techniques for Fine and Medium Grain Parallelism,

January 1993.

[8] H. Moon, R. Chellappa, A. Rosenfeld. Optimal Edge-based

Shape Detection. IEEE Transaction on Image Processing, Vol

11(11), pp 1209-1226, 2002.

[9] S. Neuendorffer, E. Lee. Hierarchical Reconfiguration of Data-

flow Models. Conference on Formal Methods and Models for

Codesign (MEMOCODE), June 22-25, 2004.

[10] M. Sen, S. S. Bhattacharyya. Systematic Exploitation of Data

Parallelism in Hardware Synthesis of DSP Applications. ICASSP

2004.

[11] W. Wolf, B. Ozer, T. Lv. Smart cameras as embedded systems.

IEEE Computer Magazine Vol 35, Iss 9, Sept 2002, Pages 48-53.

1 0

DS P ED RMD FFA

DS
mXn m M 2

i
= n N 2

i
= i

M N
ED

ED q
q

RMD p
FFA

r

Figure 8. HPDF model for the face detection algorithm men-

tioned in section 5.3

P ED FFARMD
q p

DS
mXn mXn r

V - 136

➡ ➠

