
HARDWARE-EFFICIENT DISTRIBUTED ARITHMETIC ARCHITECTURE FOR
HIGH-ORDER DIGITAL FILTERS

Heejong Yoo and David V. Anderson

Center for Signal and Image Processing,
School of Electrical and Computer Engineering,

Georgia Institute of Technology, Atlanta, GA 30332

ABSTRACT

This paper presents a new memory-efficient distributed arithmetic
(DA) architecture for high-order FIR filters. The proposed archi-
tecture is based on a memory reduction technique for DA look-up-
tables (LUTs); it requires fewer transistors for high-order filters
than original LUT-based DA, DA-offset binary coding (DA-OBC),
and the LUT-less DA-OBC. Recursive iteration of the memory re-
duction technique significantly increases the maximum number of
filter order implementable on an FPGA platform by not only sav-
ing transistor counts, but also balancing hardware usage between
logic element (LE) and memory. FPGA implementation results
confirm that the proposed DA architecture can implement a 1024-
tap FIR filter with significantly smaller area usage (< 50%) than
the original LUT-based DA and the LUT-less DA-OBC.

1. INTRODUCTION

A discrete-time linear finite impulse response (FIR) filter generates
the output y[n] as a sum of delayed and scaled input samples x[n].
In other words,

y[n] =

K−1∑

i=0

wix[n − i]. (1)

A direct VLSI implementation requires K multiply-and-
accumulate (MAC) operations, which are expensive to implement
in hardware due to logic complexity and area usage. Alternatively,
the MAC operations may be replaced by a series of look-up-table
(LUT) accesses and summations, known as distributed arithmetic
(DA) [1, 2, 3]. DA is a bit-serial operation that implements a series
of fixed-point MAC operations in a fixed number of steps, regard-
less of the number of terms to be calculated. One problem with
original DA architecture is that its LUT size (2K -words) grows
exponentially as the filter order K increases. Several techniques
have been proposed to address this memory problem of DA. The
partial sum technique [1, 4], or multiple memory bank technique,
breaks a K-tap FIR filter into m smaller filters each having k-tap
DA base units (K =m×k). Here it is assumed that K is not prime.
The total memory requirement for a K-tap FIR filter, which is di-
vided into m smaller filters each having k-tap DA base units, is
m×2k memory elements. The total number of clock cycles in-
creases to B+�log2(m)� from B clock cycles of original DA. DA
offset binary coding (DA-OBC) [4] can be used to alleviate expo-
nentially increasing memory burden of DA. For a K-tap FIR filter,
DA-OBC requires a 2K−1-word LUT at the cost of marginally in-
creased control logic. The modified DA-OBC [5] can reduce the
LUT size from 2K−2 to as low as 2 by exploiting the observation

b3 b2 b1 b0 data

0 0 0 0 0

0 0 0 1 w0

0 0 1 0 w1

0 0 1 1 w0+w1

0 1 0 0 w2

0 1 0 1 w0+w2

0 1 1 0 w1+w2

0 1 1 1 w0+w1+w2

1 0 0 0 w3

1 0 0 1 w0+w3

1 0 1 0 w1+w3

1 0 1 1 w0+w1+w3

1 1 0 0 w2+w3

1 1 0 1 w0+w2+w3

1 1 1 0 w1+w2+w3

1 1 1 1 w0+w1+w2+w3

+/- Accumulator

S1

(‘1’ for MSB)

y[n]

2-1

+/-

S

A

B

OUT

B-AB+AOUT

S=1S = 0

24-word LUT of DA

x[n-3]

x[n-2]

x[n-1]

x[n]

b3

b2

b1

b0

Shift Register Unit

Input Signal

DA Base Unit

Adder/Shifter Unit

Fig. 1. Original LUT-based DA implementation of a 4–tap (K = 4) FIR
filter. The DA architecture consists of three small units: the shift register
unit, the DA base unit, and the adder/shifter unit.

that if the single term inside the LUT can be relocated outside the
LUT, then the lower half of the LUT is mirrored version of the
upper half of the LUT with only the signs reversed [5].

In this paper, a hardware-efficient DA architecture is pre-
sented. A recursive LUT reduction to the original DA decreases
the LUT size by half at every iteration and eventually the LUT-less
DA architecture can be achieved. It will be shown that the pro-
posed DA architecture is more area efficient than the original DA;
the DA-OBC; and the LUT-less DA-OBC, which is the more area-
efficient version of the modified DA-OBC. Thus the proposed DA
architecture enables more high-order FIR filter implementation on
a given FPGA platform.

This paper is organized as follows. Section 2 reviews the basic
of DA and Section 3 presents the new DA architecture. The perfor-
mance of the proposed DA architecture is compared with previous
methods in Section 4; and conclusions are given in Section 5.

2. REVIEW OF DISTRIBUTED ARITHMETIC

2.1. Distributed Arithmetic (DA)

Let the input samples be represented as scaled B–bit two’s com-
plement binary numbers such that |x[n − i]| < 1,

x[n − i] = −bi,B−1+

B−1∑
l=1

bi,B−1−l2
−l, 0≤ i≤K−1, (2)

V - 1250-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

where bi,B−1−l ∈ {0, 1}, and bi,B−1 is the most significant bit
(MSB) of x[n − i]. Substituting (2) into (1) and changing the
order of the summations yields

y[n] = −
[

K−1∑
i=0

bi,B−1wi

]
+

B−1∑
l=1

[
K−1∑
i=0

bi,B−1−lwi

]
2−l. (3)

For a given set of wi (i = 0, . . . , K − 1), the terms in the brack-
ets may take one of 2K possible values that can be stored in an
LUT. Original LUT-based DA implementation of a 4-tap (K =4)
FIR filter is shown in Fig. 1. The DA architecture consists of
three small units: the shift register unit, the DA base unit, and the
adder/shifter unit. The DA base unit can be more complicated than
just a single LUT, but both the shift register and the adder/shifter
units are common for different DA architectures.

3. PROPOSED ARCHITECTURES

3.1. LUT-less DA-OBC

For comparison purpose with the LUT-less DA architecture, which
is explained in the following section, LUT-less DA-OBC is pre-
sented here. The LUT-less DA-OBC, shown in Fig. 2, is the re-
sult of applying LUT reduction technique of [5] one more time
to the smallest 2-word LUT-based DA-OBC. However, the LUT-
less DA-OBC in this form is still area inefficient, when imple-
mented with the partial sum technique, since a global adder/shifter
unit can’t be used for the following two reasons. First, the adder
with subtractor selector (drawn in gray color) in Fig. 2 is XORed
with input signal spanned from the shift register unit. Second, the
adder/shifter unit is multiplexed with Dinit, which is the function
of filter coefficients stored in each base unit.

x[n-3]

x[n-2]

x[n-1]

x[n]
b0

b1

b2

b3

Input Signal

+/- Accumulator

S1

(‘1’ for MSB)

y[n]

2-1
0

1

S2

(‘1’ for LSB)

+/-

Sign

control
Sign

control

+/-

Sign

control

+/-

Sign

control

-w0/2

-w3/2-w1/2 -w2/2 Dinit = -(w3 + w2 + w1 + w0)/2

Fig. 2. Block diagram of LUT-less DA-OBC architecture for a 4-tap FIR
filter.

Figure 3 shows the final LUT-less DA-OBC architecture re-
organized to be area efficient when used with the partial sum tech-
nique for high-order filter implementation. Now, the single global
adder/shifter unit can be used since the adder in the adder/shifter
unit is no longer controlled by either input signal or Dinit.

3.2. Proposed DA Architectures

The proposed DA architectures exploits the following symmetry
of the LUT of the original DA

LUT(1, bk−2,· · ·, b1, b0)=LUT(0, bk−2,· · ·, b1, b0) + wk−1,
(4)

where k is the number of the address lines connected to the LUT.
In Fig. 1, it can be seen that the lower half of LUT (locations whose

x[n-3]

x[n-2]

x[n-1]

x[n]
b0

b1

b2

b3

Input Signal

+/- Accumulator

S1

(‘1’ for MSB)

y[n]

2-1

Dinit

0 1

Sign

control

+/-

Sign

control

-w3/2

+/-

-w2/2

Sign

control

+/-

-w1/2

Sign

control

-w0/2

0

S2

(‘1’ for LSB)

+/-

Sign

control

DA-OBC Base Unit

Fig. 3. Block diagram of the LUT-less DA-OBC for a 4-tap FIR filter.
The architecture is re-organized to be area efficient for multiple memory
bank technique.

x[n-3]

x[n-2]

x[n-1]

x[n]
b0

b1

b2

b3

Input Signal

+/- Accumulator

S1

(‘1’ for MSB)

y[n]

2-1

Sign

control

b2 b1 b0 data

0 0 0 0

0 0 1 w0

0 1 0 w1

0 1 1 w1 + w0

1 0 0 w2

1 0 1 w2 + w0

1 1 0 w2 + w1

1 1 1 w2 + w1 + w0

+

01

w3 0

b3

23-word LUT of DA

(a)

x[n-3]

x[n-2]

x[n-1]

x[n]
b0

b1

b2

b3

Input Signal

+/- Accumulator

S1

(‘1’ for MSB)

y[n]

2-1

Sign

control

b1 b0 data

0 0 0

0 1 w0

1 0 w1

1 1 w1 + w0

+

01

w3 0

b3

+

01

w2 0

b2

22-word LUT of DA

(b)

Fig. 4. Proposed DA architectures for a 4-tap FIR filter. (a) 23-word LUT
implementation of DA. (b) 22-word LUT implementation of DA.

addresses have a 1 in the MSB) is the same with the sum of the up-
per half of LUT (locations whose addresses have a 0 in the MSB)
and w3 term. Hence, LUT size can be reduced by a factor of 2 with
an additional 2x1 MUX and a full adder, as shown in Fig. 4(a). The
LUT size can be further reduced to Fig. 4(b) by the same LUT re-
duction procedure since the LUT of Fig. 4(a) still satisfies symme-
try property of (4). After several iterations of the LUT reduction,
final LUT-less DA architecture for a 4-tap FIR filter implementa-
tion can be achieved as shown in Fig. 5.

4. PERFORMANCE ANALYSIS

Hardware complexity of the proposed DA architecture is compared
with the original LUT-based DA, the DA-OBC, and the LUT-less
DA-OBC using both transistor count estimate and FPGA synthesis
result.

Comparing transistor count is a commonly used technique to
evaluate silicon area of custom VLSI chips for different architec-
tures. Digital logic functions, however, can be implemented in
many ways depending on design optimization goals such as sili-

V - 126

➡ ➡

x[n-1]

x[n]
b0

b1

Input Signal

+/- Accumulator

S1

(‘1’ for MSB)

y[n]

2-1

Sign

control

0

1w2

0

b2

x[n-3]

x[n-2]
b2

b3

0

1w0

0

b0

w1

0

b1

0

1

w3

0

b3

0

1

+

+

+

Proposed DA Base Unit

Fig. 5. Proposed LUT-less DA architecture for a 4-tap FIR filter.

con area, power consumption, and maximum frequency. For ex-
ample, XOR logic can be implemented with 4 NAND gates, which
are equivalent to 16 transistors, or with a full static CMOS logic,
which is equivalent to 8 transistors [6, 7].

Table 1 lists the transistor count assumed in this paper for each
logic function. Transistor count is estimated based on the area-
optimized implementation of digital logic and it is the same as the
assumptions made in [5]. Cost functions in Table 1 are defined as
C(a, b)=4(2

∑b−1
i=a(b− i)+2b−a+1) and D(a, b, c)=2b−a+1×c.

When one of the three inputs to the full adder has a fixed value
(we assume fixed input is Cin for convenience), 12 and 14 transis-
tors for each Cin =0 and Cin =1 are used instead of 30 transistors
for an ordinary full adder [7]. The occurrence rate of Cin =0 and
Cin = 1 is statistically assumed to be the same as Bc/2 bits out
of Bc bits. The adder with subtractor selection needs 8 more tran-
sistors for an extra 2x1 MUX and an inverter than the original full
adder [7].

Table 1. Transistor counts for various digital logic functions.

Logic Transistor count

INV (1 bit) 2

XOR (1 bit) 8

2x1 MUX (1 bit) 6

Adder Cin=0 (Bc/2 bit) 12(Bc/2)

(fixed Cin) Cin=1 (Bc/2 bit) 14(Bc/2)

Adder (Bc bit) 30Bc

Adder/Sub. Cin=0 (Bc/2 bit) (12+8)(Bc/2)

(fixed Cin) Cin=1 (Bc/2 bit) (14+8)(Bc/2)

Adder/Sub. (Bc bit) 30Bc+8Bc

2k×Bc Decoder C(1, k)

(ROM) Data D(1, k, Bc)

Register (1 bit) 16

Table 2 shows the area comparison of single base unit for var-
ious DA structures with Bc and k representing the word lengths of
the original LUT and base unit size, respectively. The shift register
and the adder/shifter units are not considered in Table 2 since they
are common for all structures.

Figure 6 shows the transistor counts for various filter sizes k
from 4 to 16 with Bc = 8 and Bc = 18. In Fig. 6, both (a)
and (b) show similar patterns with different orders of transistor

4 6 8 10 12 14 16
10

2

10
3

10
4

10
5

10
6

Filter Order

T
ra

ns
is

to
r

C
ou

nt
 E

st
im

at
e

fo
r

a
B

as
e

U
ni

t

Original LUT−based DA
DA−OBC
LUT−less DA−OBC
Proposed DA (LUT−less version)

(a)

4 6 8 10 12 14 16
10

2

10
3

10
4

10
5

10
6

10
7

Filter order

T
ra

ns
is

to
r

C
ou

nt
 E

st
im

at
e

fo
r

a
B

as
e

U
ni

t

Original LUT−based DA
DA−OBC
LUT−less DA−OBC
Proposed DA (LUT−less version)

(b)

Fig. 6. Transistor count comparison plot regenerated from Table 2 for
various filter size k. (a) Bc = 8. (b) Bc = 18.

counts. The hardware reduction of the LUT-less DA-OBC and the
proposed DA architecture (LUT-less version) occurs around 6 to
8 filter taps and the hardware reduction rate grows significantly as
the filter size increases. Figure 6 also shows that both the LUT-less
DA-OBC and the proposed DA architectures are hardware efficient
for high-order FIR filters compared to the original DA and the DA-
OBC.

To illustrate the merits of the proposed DA architecture, the
LUT-based DA, the LUT-less DA-OBC, and the proposed LUT-
less architecture are physically implemented on an Altera Stratix
EP1S80F1508C6 FPGA chip and the results are listed in Table 3.
Randomly generated FIR filters of which filter orders vary from 4
to 1024 taps are tested for the case in which word length of the
LUT, Bc, is 18 and base unit size, k, is 4.

Table 3 shows that the proposed DA architecture requires
fewer logic elements (LEs) and memory than the original LUT-
based DA; and fewer LEs and same amount of memory than the
LUT-less DA-OBC for all filter orders. For instance, the proposed
LUT-less DA architecture only requires 48% of the LEs and 16%
of the memory of the original LUT-based DA implementation for a
1024-tap FIR filter. The addition clock cycles are only 2 assuming
the adders inside the k-tap base unit are pipelined. Likewise, the
proposed DA architecture also requires 37% of the LEs compared
to the LUT-less DA-OBC for a 1024-tap FIR filter implementation
with the same memory usage and throughput.

V - 127

➡ ➡

Table 2. Transistor count estimates for various k-tap base units. The shift register and the adder/shifter units are not considered since they
are common for all structures.

LUT-based The LUT-less The proposed
Logic functions DA DA-OBC DA-OBC method

(Fig. 1) (Fig. 3) (Fig. 5)

ROM decoder C(1, k) C(2, k) 0 0

ROM data D(1, k, Bc) D(2, k, Bc) 0 0

XOR 0 8k 8(k − 1) 0

2x1 MUX 0 6Bc 6Bc 6k × Bc

Register 0 16Bc 16Bc 0

Adder 0 0 0 (k − 1)×30Bc

Adder/Sub. Cin=0 0 0 (k − 1)×10Bc 0

Adder/Sub. Cin=1 0 0 (k − 1)×11Bc 0

Adder/Sub. 0 0 38Bc 0

Table 3. Comparison of FPGA implementation results for various filter sizes K with k = 4 and Bc = 18.

Filter size (K)
4 16 64 128 256 512 1024

LUT-based DA LE 272 551 1639 3056 5890 11547 22862 (100%)

(Fig. 1) Memory 344 1376 5504 11008 22016 44032 88064 (100%)

The LUT-less DA-OBC LE 300 667 2104 3984 7746 15259 30286 (132%)

(Fig. 3) Memory 56 224 896 1792 3584 7168 14336 (16%)

The proposed DA LE 210 367 887 1569 2946 5659 11086 (48%)

(Fig. 5) Memory 56 224 896 1792 3584 7168 14336 (16%)

It should be noted that the LUT-less DA-OBC is slightly more
area efficient in terms of transistor count, as shown in Fig. 6, but
the proposed LUT-less DA architecture is much more area efficient
than the LUT-less DA-OBC in terms of LE usage, as shown in
Table 3. This result is not surprising since the transistor count
comparison assumes that the LUT-less DA-OBC uses simplified
adders to save transistor count.

5. CONCLUSIONS

New hardware-efficient DA architectures and a LUT-less DA-OBC
architecture for high-order filters are presented. The proposed DA
architectures reduce the memory usage by half at every iteration
of LUT reduction exploiting the symmetry property of the LUT at
the cost of the limited increase of the control circuit.

It is shown that the proposed DA architectures are hardware
efficient for both custom VLSI and FPGA implementations, while
the LUT-less DA-OBC is hardware efficient only for custom VLSI
implementation. FPGA implementation result shows that, for a
1024-tap FIR filter implementation with k = 4 and Bc = 18, the
proposed DA architecture (LUT-less version) saves 52% of LEs
and 84% of memory over the original LUT-based DA, and also
saves 63% of LEs over the LUT-less DA-OBC.

6. REFERENCES

[1] S. Yu and E. E. Swartzlander, “DCT implementation with
distributed arithmetic,” IEEE Transactions on Computers, vol.

50, no. 9, pp. 985–991, Sept. 2001.

[2] T.-S. Chang, C. Chen, and C.-W. Jen, “New distributed arith-
metic algorithm and its application to IDCT,” IEE Proceed-
ings Circuits, Devices and Systems, vol. 146, no. 4, pp. 159–
163, Aug. 1999.

[3] T.-S. Chang and C.-W. Jen, “Hardware-efficient implemen-
tations for discrete function transforms using LUT-based FP-
GAs,” IEE Proceedings Circuits, Devices and Systems, vol.
146, no. 6, pp. 309–315, Nov. 1999.

[4] S. A. White, “Applications of distributed arithmetic to digital
signal processing: A tutorial review,” IEEE ASSP Magazine,
vol. 6, pp. 4–19, July 1989.

[5] J. Choi, S. Shin, and J. Chung, “Efficient ROM size reduction
for distributed arithmetic,” in Proceedings of the IEEE ISCAS,
Geneva, Switzerland, May 2000, vol. 2, pp. 61–64.

[6] U. Ko, P. T. Balsara, and W. Lee, “Low-power design tech-
niques for high-performance CMOS adders,” IEEE Transac-
tions on Very Large Scale Integration Systems, vol. 3, no. 2,
pp. 327–333, June 1995.

[7] J. M. Rabaey, A. Chandrakasan, and B. Nilolic, Digital Inte-
grated Circuits: A Design Perspective, Prentice Hall, Upper
Saddle River, NJ, 2002.

V - 128

➡ ➠

