
PIPELINED PARALLEL DECISION FEEDBACK DECODERS (PDFDS) FOR HIGH SPEED
ETHERNET OVER COPPER

Yongru Gu and Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455

Email: �yrg, parhi�@ece.umn.edu

ABSTRACT

One of the powerful yet simple algorithms to decode trellis
codes as well as to combat intersymbol interference (ISI)
is the parallel decision-feedback decoding algorithm. How-
ever, for high-speed applications, such as Gigabit Ethernet
over copper, the implementation and design of a parallel
decision-feedback decoder (PDFD) is challenging due to
the long critical path in the decoder structure. Straightfor-
ward pipelined designs usually introduce significant hard-
ware overhead. To solve these problems, in this paper, first,
based on an optimized scheduling of the computations in the
parallel decision-feedback decoding algorithm, a low com-
plexity pipelined PDFD is proposed. Next, we present a
retiming and reformulation technique for the decision feed-
back unit (DFU) in the PDFD which can remove the DFU
from the critical path of the PDFD with negligible hardware
overhead. Compared with similar designs in the literature,
the proposed design can reduce hardware overhead by 60%
while achieving similar speedup for Gigabit Ethernet sys-
tems.

1. INTRODUCTION

Many digital communication applications employ trellis code
and pulse amplitude modulation (PAM). A typical example
is 1000BASE-T (Gigabit Ethernet over copper), which uses
a 4 dimensional (4D) 8-state trellis code combined with a
5-level PAM modulation. In the presence of ISI and addi-
tive Gaussian noise, it is well established that, to decode
the trellis coded PAM signals, the maximum-likelihood se-
quence estimation (MLSE) implemented by the Viterbi al-
gorithm can provide optimal performance in terms of er-
ror rate event. However, the complexity of the algorithm
is exponential with the sum of the channel memory length
and the trellis code memory length. Thus it is highly de-
sirable to reduce the complexity of the detection technique

THIS RESEARCH WAS SUPPORTED IN PART BY THE NA-
TIONAL SCIENCE FOUNDATION BY THE GRANT NUMBER CCF-
0429979.

while retaining near optimal performance. One of the most
powerful approaches for doing so is the so-called parallel
decision-feedback decoding. In this approach, an indepen-
dent feedback signal is computed for each path in the Viterbi
decoder, as the convolution of the sequence of symbols as-
sociated with that path, and the coefficients of the feedback
filter of the decision feedback equalizer [2, 3].

For high-speed applications, such as 1000BASE-T, the
implementation of a parallel decision feedback decoder (PDFD.
Parallel decision-feedbackdecoding is also referred as PDFD)
is challenging because of its long feedback loop in the de-
coder structure. Precomputation and look-ahead techniques
based pipelined designs, such as the one proposed in [4],
usually introduce significant hardware overhead, especially
for a PAM modulation with a large symbol set. Thus, how
to reduce the hardware overhead due to precomputation and
look-ahead is also a main concern.

This paper addresses the problemof low-complexity pipelined
designs for PDFDs for 1000BASE-T. First, a novel opti-
mized scheduling for the PDFD algorithm is proposed. Next,
based on the optimized scheduling, a low complexity pipelined
PDFD design is proposed. In addition, a retiming and refor-
mulation technique for the DFU in the PDFD is presented.
The retiming and reformulation technique can remove the
DFU from the critical path of the PDFD with negligible
hardware overhead.

The rest of the paper is organized as follows. In section
2, the PDFD algorithm and its straight-forward hardware
implementation are briefly reviewed. Section 3 presents an
optimized scheduling for the PDFD algorithm and its cor-
responding pipelined PDFD design. In section 4, a retim-
ing and reformulation technique is presented for the PDFD
which can remove the DFU from the critical path.

2. PDFD ALGORITHM AND ITS
STRAIGHTFORWARD IMPLEMENTATION

1000BASE-T systems employ a 4D trellis code combined
with 5-level PAM (PAM5) modulation [1]. One of the pre-
ferred algorithms to decode the trellis code is the PDFD al-

V - 1210-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

gorithm [1, 4]. The PDFD algorithm can be used to combat
ISI as well as to decode the 4D trellis code for 1000BASE-
T. Fig. 1 illustrates the straight-forward scheduling of the
PDFD process. At time �, it first computes ISI estimates.
Next, the well-known Viterbi algorithm is applied to the ISI-
free data. The Viterbi algorithm begins with the computa-
tion of 1D branch metrics. Then the 1D branch metrics are
added up to obtain 4D branch metrics. Finally, they are used
to update state metrics and survivor paths. This process is
repeated at next iteration. The computations are performed
in a serial way, resulting in a straightforward architecture
where all its constituent units, which include a DFU (de-
cision feedback unit), a 1D BMU (branch metric unit), a
4D BMU, an ACSU (add-compare-select unit) and an SMU
(survivor memory unit), are on the critical path, as shown
in Fig. 2. For details about the straightforward PDFD, the
readers are referred to [5].

1D

BM

4D
ISI ACS

1D

BM BM

4D
ISI ACS

Iteration n−1 Iteration n Iteration n+1

BM

1D

BMBM
ACSISI

4D

Fig. 1. The straightforward scheduling of computations in
the PDFD algorithm

For 1000BASE-T, the PDFD needs to operate at a speed
of 125 MHz. It is difficult to meet the speed requirement
due to the long critical path. In [4], a pipelined PDFD de-
sign was proposed based on precomputation and look-ahead
techniques but it introduces significant hardware overhead
due to the use of precomputation. Comparedwith the straight-
forward design, the area of the pipelined design in terms of
gate count is almost doubled [4]. Furthermore, the hard-
ware overhead is proportional to the number of levels in the
PAM modulation. If we use the same techniques in [4] to
applications with PAM modulation with a larger symbol set,
the overhead can be more significant. Thus it is of interest
to develop techniques to speedup the straightforward PDFD
with less increase in hardware overhead.

DFU

ACSU SMUBMU
4D1D

BMU

Fig. 2. The straightforward PDFD architecture

3. PROPOSED HIGH SPEED LOW COMPLEXITY
PDFD ARCHITECTURE

In this section, based on an optimized scheduling of the
PDFD algorithm, a pipelined PDFD architecture is proposed.

Fig. 3 shows the proposed scheduling. Right after fin-
ishing the computation of 1D branch metrics for iteration

�, we can begin to pre-compute the branch metrics for the
next iteration (�� �) since we already know the two possi-
ble candidate 1D symbols for each wire. The real 1D branch
metrics can be selected upon the completion of the ACS op-
eration of iteration �. This process is repeated at the next
time as illustrated in the figure.

Iteration n−1

Iteration n+2

Iteration n+1

Iteration n

ACS

BM

4D
ACS

BM

1D
ISI ACS

BM

4D

BM

1D

LA

ISI

LA

BM

4D

BM

1D

LA

ISI

LA LA
ACS

BM

4D

BM

1D

LA

ISI

Fig. 3. An optimized scheduling of computations in the
PDFD algorithm

Fig. 4 shows the proposed PDFD architecture corre-
sponding to the optimized scheduling in Fig. 3. The se-
quential computation path in Fig. 2 now becomes two con-
current computation paths in the proposed design. One path
consists of the look-ahead DFU (LA DFU), the look-ahead
1D BMU (LA 1D BMU) and the 1D BM selection unit. The
other includes the 4D BMU, the ACSU and the SMU.

In the following, the designs of the LA DFU and the LA
1D BMU are discussed. The architectures for the 4D BMU,
ACSU, and SMU are similar to those in the straightforward
PDFD implementation [5].

SMUACSU
BMU

4DLA−

1D BMUDFU

LA−

Fig. 4. High speed PDFD architecture

3.1. Look-ahead DFU

At time �, the look-ahead DFU is used to compute partial
ISI estimates for code state ���� and wire � due to the chan-
nel coefficients ����� � ���� � � � � � ����� based on the already
known survivor symbol sequence where � is the channel
memory length. Assume there is a state transition between
�� and ����, then the partial ISI estimate for ���� corre-
sponding to the transition can be calculated as:

����������� � �

��

���

����������������� (1)

Since there are 8 code states and 4 wires, altogether 32 look-
ahead ISI estimates need to be computed.

3.2. Look-ahead 1D BMU

The look-ahead 1D BMU computes look-ahead 1D branch
metrics for transitions departing from code states ������.

V - 122

➡ ➡

Inputs to the look-ahead 1D BMU are partial ISI estimates
������������� due to ����� � ���� � � � � � ����� and the received
sample ������ . In addition, we need to consider the ISI par-
tial contribution due to the channel coefficient ���� and the
1D symbol decision ������� � ����� associated with a
state transitions �� � ����. A speculative ISI estimate for
the state transition �� � ���� can be calculated as

���������� � ����� � ������������

����������� � �����

� �
��

��� ����������������� ����������� � ������(2)

Due to PAM5 modulation, there are 5 possible choices
for ������� � �����, and in turn 5 possibilities for �������
��� � �����. Thus, in a straightforward implementation,
like in [5], we need to compute � � � � � � � � 	�
 look-
ahead 1D branch metrics since there are eight code states
and four wires and for each of the possibilities 2 look-ahead
1D branch metrics need to be computed.

However, the architecture in Fig. 4 allows us to re-
duce the hardware overhead by feeding back the previous
1D branch metric results (for transitions ���� � ������)
to the current calculation of the look-ahead 1D branch met-
rics. After the completion of 1D branch metrics for tran-
sitions departing from a state ��, there are only two pos-
sible choices for ���� associated with the state transition
�� � ����, one (�������� ��) from subset A and the other
(�������� ��) from subset B. In addition, the two possibili-
ties for ���� are only dependent on ��. Thus, there are only
two possibilities for ���������� � �����. Therefore, we
only need to pre-compute look ahead 1D branch metrics for
the 2 possibilities, resulting in high hardware reduction.

As the two possible choices for ������� � ����� are
only dependent on the initial state ��, the possible ISI esti-
mates for state ���� are only dependent on �� too. For code
states ����� �
� �� �� 	�, as they have the same predeces-
sor states ��� �
� �� �� ��, their LA 1D branch metrics
are the same. Therefore, we only need to compute LA 1D
branch metrics for one of them. This is also true for code
states ����� � �� �� ��
�. For wire j and initial code state
��, four look-ahead 1D branch metrics need to be calculated
according to:

�	������
����� � ������ � ��� ����� � �
�����

������� � ������������ ���������
�� (3)

with two (one per 1D subset for ������) for ���� � ����
���� �� and two for ���� � �������� ��. As there are eight
code states and four wires, altogether � � �� � � ��� 1D
look-ahead branch metrics need to be computed. Compared
with the design in [5], the hardware overhead for LA 1D
branch metric calculation is reduced by 60% in the proposed
design.

Fig. 5 shows the calculation of LA 1D branch metrics
for wire � and initial code state ��. The inputs are the re-
ceived sample
����� , the look-ahead ISI estimate �����������,
and the two possible candidates for the transmitted symbol
���� associated with the state ��, obtained from the last it-
eration.

Square

SquareA

B

Square

SquareA

B

�������� ��

�������� ��

�����

�����

������

�����������

�������������� � ������ � �� ��� �������� ���

�������������� � ������ � �� ��� �������� ���

�������������� � ������ � �� ��� �������� ���

�������������� � ������ � �� ��� �������� ���

Fig. 5. Computation of look-ahead 1D branch metrics

3.3. Selection of Look-ahead BMs

For code state ���� and wire �, we need to select two real
1D branch metrics (one for ������ � � and one for �)
among 16 precomputed branch metrics (four from each of
4 predecessor states of ����).

Fig. 6 shows the selection for the A-type branch metric
	����� �
����� � ����������� �
� ��� ���� �
�. The in-
puts are 8 eight precomputed branch metrics with two from
each of 4 predecessor states, the 1D symbol decision asso-
ciated with state transition �� � ���� from the 4D BMU,
and the ACSU decision ��������.

������������� � ������ � �� �����

�������������� � ������ � �� �� � �� ������� � �� ���

�������������� � ������ � �� �� � �� ������� � �� ���

�������������� � ������ � �� �� � �� ������� � �� ���

�������������� � ������ � �� �� � �� ������� � �� ���

�������������� � ������ � �� �� � �� ������� � �� ���

�������������� � ������ � �� �� � �� ������� � �� ���

�������������� � ������ � �� �� � �� ������� � �� ���

�������������� � ������ � �� �� � �� ������� � �� ���

������� � �� �����

������� � �� �����

������� � �� �����

������� � �� �����

��������

Fig. 6. Selection of look-ahead 1D branch metrics

4. RETIMING AND REFORMULATION OF DFU

From Fig. 4, we can see there are two major computation
paths in the architecture. One of them consists of the LA
DFU, the LA 1D BMU, and the 1D BM selection unit. The
other consists of the 4D BMU, ACSU and SMU. We expect
the first path dominates the computation time and is the crit-
ical path in the proposed design. In this section, we propose
a technique to further pipeline the first path.

Fig. 7(a) illustrates the composite architecture for the
look-ahead DFU and the SMU used in Fig. 4. As shown by
the dashed line in the figure, there is a long-chain of adders

V - 123

➡ ➡

directly connected to the 1D BMU, resulting in a long crit-
ical path which limits the throughput of the architecture in
Fig. 4. However, we can use the proposed retiming and re-
formulation technique shown in Fig. 7(b) through Fig. 7(d)
to remove the DFU from the critical path.

First, we can isolate the long chain of adders from the
BMU by using the retiming cutsets shown by the dotted
lines in Fig. 7(b). The resulting circuit is shown in Fig. 7(c).
Applying retiming again by using the cutset shown in Fig.
7(c), we can obtain the retimed DFU in Fig. 7(d). However,
from this figure, we can see that the long chain of adders is
now connected to the ACSU through a mux, and the DFU
is still on the critical path. If we can move the multipliers
before the corresponding muxes, then there are delays be-
tween the long chain of adders and the ACSU. This can be
done by performing the following reformulation:

��

���
����������� � ��� ��������� � ���

��������� � ��� ��������� � ���

��������� � ��� � ��

� ����������� � ���
�

�

���
��������� � �����

��

���
��������� � �����

��

���
��������� � �����

�
�

���
��������� � ������ (4)

where ������ ��� ��� ��� ��� is a 4-to-1 multiplexing func-
tion and depending on �, it selects one of ��� 	 � �� �� �� �
as its output.

The reformulated DFU is shown in Fig. 7(e). The DFU
is divided into two parts, DFU 1 and DFU 2. The major
part, DFU 2, which has a long chain of adders, is now iso-
lated from both of the BMU and ACSU and is no longer
on the critical path. It is possible that we can completely
isolate the whole DFU by using pre-computation to DFU 1.
However, it may be not necessary as after we apply the re-
timing and reformulation technique to the pipelined PDFD
design in Fig. 4, the new critical path will be one which
includes the 4D BMU, ACSU and SMU, similar to the de-
sign in [4]. However, the advantage of our design is low
hardware overhead. In our design, we only need to compute
128 look-ahead 1D branch metrics, instead of 320. In ad-
dition, we only need to compute 32 ISI estimates instead
of 160. The proposed design can lead to a reduction of
hardware overhead at least by 60% for 1000BASE-T. If the
proposed techniques are applied to applications employing
PAM modulation with a larger symbol set, the complexity
reduction will be even more.

5. REFERENCES

[1] M. Hatamian,et. al., “Design considerations for Gi-
gabit Ethernet 1000Base-T twisted pair transceivers,”
Proc. IEEE Custom Integrated Circuits Conference,
pp. 335-342, 1998.

From

BMU
To

ACSU ������� � ��
������� � ��

������� � ��

������� � ��

������� � ��

������� � ��

������� � ��

������� � ��

������� � ��

��������� � ��

��������� � ��
��������� � ��

��������� � ��

��������� � ��

������� � ��

���������

��� ��� ��� ���

(a) Original DFU and SMU

From

BMU
To

ACSU

(b) Retiming Cutset 1

From

BMU
To

ACSU

(c) Retiming Cutset 2

From

BMU
To

ACSU

������� � ��

������� � ��

������� � ��

�������� � ��

(d) Retimed DFU

DFU2DFU1

From

BMU
To

ACSU

������� � ��

������� � ��

������� � ��

������� � ��

������� � ��

������� � ��

������� � ��

�������� � ��

(e) Reformulated DFU

Fig. 7. Retiming and reformulating the DFU

[2] P. R. Chevillat and E. Eleftheriou, “Decoding of
trellis-encoded signals in the presence of intersymbol
interference and noise”’ IEEE Trans. Commun., vol.
37, no. 7, pp. 669-676, July, 1989.

[3] M. V. Eyuboǧlu and S. U. H. Quershi, “Reduced-state
sequence estimation for coded modulation on inter-
symbol interference channels,” IEEE J. Selected Areas
Commun., vol. 7, no. 6, pp. 989-995, Aug. 1989.

[4] E. F. Haratsch and K. Azadet, “A pipelined 14-tap
parallel decision-feedback decoder for 1000BASE-T
Gigabit Ethernet,” in 2001 Int. Symp. on VLSI Tech.,
Syst., and Appl., pp. 117-120, April, 2001.

[5] E. F. Haratsch and K. Azadet, “A 1-Gb/s Joint Equal-
izer and Trellis Decoder for 1000BASE-TGigabit Eth-
ernet,” IEEE Journal of Solid-State Circuits, vol. 36,
no. 3, pp. 374-384, March 2001.

V - 124

➡ ➠

