
DESIGN OF A FLEXIBLE VLSI ARCHITECTURE FOR M-CHANNEL FILTER BANK
LIFTING FACTORIZATIONS

Ruben Bartholomä, Thomas Greiner, Frank Kesel

Pforzheim University of Applied Sciences, Dept. of Engineering
Tiefenbronnerstr. 65, 75175 Pforzheim, Germany

{ruben.bartholomae, thomas.greiner, frank.kesel}@fh-pforzheim.de

ABSTRACT

In this paper we present an efficient VLSI architecture
focusing on M-channel multirate filter banks using the lift-
ing scheme. Since the M-channel lifting factorization re-
sults in a signal flow graph with a variable structure, the ar-
chitecture must have a high degree of flexibility to allow the
implementation of basically different lifting factorizations.
The proposed architecture is convenient to realize arbitrary
lifting factorizations on a variable amount of arithmetic re-
sources, leading to an adaptability for the real-time require-
ments of various DSP applications.

1. INTRODUCTION

Due to the reduction of computational complexity, the lift-
ing scheme [1], [2] enables an efficient realization of multi-
rate filter banks used in applications like signal analysis and
image compression. Many 2-channel lifting based VLSI ar-
chitectures have been proposed [3], [4], [5]. Although the
2-channel decomposition has been largely investigated in
the recent years, the M-channel decomposition [6] has been
neglected up to now. Hence, there are no concepts on VLSI
architectures for M-channel lifting factorizations available.

We present a VLSI architecture that is convenient for
variable signal flow graphs (SFGs), resulting from M-chan-
nel lifting factorizations. Due to the fact that the lifting fac-
torization is not a unique process and there exist different
factorization strategies, the structure of the resulting SFGs
may change, which has to be taken into account by the con-
cept of the architecture. Moreover, our architecture has the
ability to adjust the trade-off between resource utilization
and maximum data throughput, resulting in an adaptability
for the real-time requirements of different DSP applications.

The paper is organized as follows. In Section 2 a brief
introduction into the M-channel lifting factorization is given.
Section 3 describes the concept of the proposed VLSI ar-
chitecture and in section 4 we present results of the FPGA
implementation of the proposed architecture. A summary is
given in section 5.

2. M-CHANNEL LIFTING FACTORIZATION

M-channel multirate filter banks for signal analysis are typ-
ically represented by M different filters H0(z) to HM−1(z)
as shown in figure 1(a). Lifting factorization is based on the

H (z)p

z
-1

z
-1

z
-1

M

M

M

H (z)0

H (z)1

H (z)M-1

M

M

M

(a) (b)

Fig. 1. (a) structure of a M-channel multirate filter bank and
(b) its corosponding polyphase representation

representation of this filter bank in its polyphase structure as
shown in figure 1(b) using the polyphase matrix of equation
1.

Hp(z)=

⎛
⎜⎜⎜⎝

H0,0(z) H0,1(z) · · · H0,M−1(z)
H1,0(z) H1,1(z) · · · H1,M−1(z)

...
...

. . .
...

HM−1,0(z) HM−1,1(z) · · · HM−1,M−1(z)

⎞
⎟⎟⎟⎠ (1)

The basic idea of the lifting scheme is to factor the poly-
phase matrix into simpler upper and lower triangular ma-
trices, which are referred to as lifting steps. A M-channel
lifting step from channel j to i is defined by a lifting opera-
tor Λi,j [λ(z)]:

Λi,j [λ(z)] = I + λ(z) · ei · e
T
j , (2)

where I is the M × M identity matrix, ei denotes the i-
th M × 1 unit vector with i, j ∈ {0, 1, · · · , M − 1} and
i �= j; λ(z) denotes the corresponding FIR lifting polyno-
mial. Figure 2 shows two kinds of SFGs resulting from a
lifting step. The lifting scheme can be obtained by a re-

V - 1170-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

+

...

...
Ch. i ...

...
Ch. j

Ch. M-1

Ch. 0

ë(z)

+...

...
Ch. j ...

...
Ch. i

Ch. M-1

Ch. 0

ë(z)

(a) (b)

Fig. 2. SFG of a lifting step Λi,j [λ(z)] resulting from (a) an
upper triangular matrix with i < j and (b) a lower triangular
matrix with i > j

peated extraction of lifting steps m, n ∈ N from the poly-
phase matrix, until the polyphase matrix has reduced to a
diagonal matrix containing delay elements on its diagonal.
This factorized representation of the polyphase matrix may
have the advantages, that it requires less arithmetic opera-
tions and less delay elements to complete the calculation.

Next it will be explained how to extract lifting steps
from a polyphase matrix. In order to clarify this iterative
process, we use bracketed superscripts in polynomials and
matrices as iteration counters. The extraction of a lifting
step requires a polynomial division of two elements, se-
lected either from a row or a column of the polyphase matrix
H

(m)
p (z). Since different approaches are known to select

these two elements, there exist principally different ways to
extract lifting steps. The basic procedure is given as follows.

Choosing the element H
(m)
k,j (z) as dividend and the ele-

ment H
(m)
k,i (z) as divisor for the polynomial division, gives

result λ(m+1)(z) and remainder H
(m+1)
k,j (z) of polynomial

division as denoted in equation 3.

H
(m)
k,j (z)

H
(m)
k,i (z)

= λ(m+1)(z) +
H

(m+1)
k,j (z)

H
(m)
k,i (z)

(3)

After determination of the result λ(m+1)(z) and the re-

mainder H
(m+1)
k,j (z) the remainders H

(m+1)
r,j (z) of the re-

maining rows r whereas r ∈ {0, 1, . . . , M − 1}\{k} have
to be reformulated in a manner as mentioned in 3. Since
λ(m+1)(z) is already known the remainders H

(m+1)
r,j (z) can

be obtained using equation 4.

H
(m+1)
r,j (z) = H

(m)
r,j (z) − λ(m+1)(z) · H

(m)
r,i (z) (4)

Finally, the (m+1)-th lifting step V
(m+1)(z) can be deter-

mined by the lifting operator Λi,j [λ
(m+1)(z)] with the re-

sult of polynomial division λ(m+1)(z) as shown in equation
5

V
(m+1)(z) = Λi,j [λ

(m+1)(z)], (5)

where i denotes the column index of the divisor and j is the
column index of the dividend. Hence, the previous poly-
phase matrix H

(m)
p (z) can be expressed by the new poly-

phase matrix H
(m+1)
p (z) and the lifting step V

(m+1)(z) as
shown in equation 6.

H
(m)
p (z) = H

(m+1)
p (z) · V(m+1)(z) (6)

The described method can also be applied if divisor and
dividend are selected from a column. In this case the (n+1)-
th lifting step W

(n+1)(z) appears to the left hand side of
the polyphase matrix as denoted in equation 7 and 8

W
(n+1)(z) = Λi,j [λ

(n+1)(z)] (7)

H
(n)
p (z) = W

(n+1)(z) ·H(n+1)
p (z), (8)

where j denotes the row index of the divisor and i is the row
index of the dividend.

Equation 9 shows the factorized form of the original po-
lyphase matrix H

(0)
p (z) with m right hand side and n left

hand side triangular matrices using equation 6 and 8 respec-
tively. H

(m+n)
p (z) is the remaining polyphase matrix after

m + n lifting steps.

H
(0)
p (z)=W

(1)(z) · . . . · W(n)(z) · H(m+n)
p (z) ·

·V(m)(z) · . . . · V(1)(z) (9)

In [6] it is shown that each M-channel filter bank with
polyphase matrix Hp(z) with det(Hp(z)) = z−k, k ∈ Z

can be decomposed into lifting steps, whereas the remain-
ing polyphase matrix reduces to a diagonal matrix contain-
ing only delay elements on its diagonal. Considering the
computational complexity, it may be more efficient to keep
a polyphase matrix in diagonal form with FIR polynomials
on its diagonal as mentioned in equation 10.

H
(m+n)
p (z)=diag(

[
H

(m+n)
0,0 (z), . . . , H

(m+n)
M−1,M−1(z)

]
) (10)

diag represents a M×M diagonal matrix with the diagonal
elements H

(m+n)
i,i (z) (with i ∈ {0, 1, . . . , M −1}), obtained

as remainders from the factorization process. Each diagonal
element can be represented by a SFG as shown in figure 3.

...

...

Ch. i

Ch. M-1

Ch. 0

H
i, i
(z)

Fig. 3. SFG of the i-th diagonal element of the remaining
polyphase matrix

V - 118

➡ ➡

3. VLSI ARCHITECTURE

In this section we present a VLSI architecture that is suitable
for M-channel multirate filter banks, which are decomposed
in a manner as formulated in equation 9. The SFG of a
specific lifting factorization can be obtained by cascading
the SFGs of lifting steps (figure 2) and diagonal elements
(figure 3) according to equation 9. Since the structure of
this SFG is variable and changes for different factorizations,
the architecture has to be very flexible in order to realize
arbitrary lifting factorizations.

3.1. Design Method

The concept of the proposed architecture is based on the
partitioning of the SFG, followed by mapping the SFG par-
titions onto several so called Lifting Processing Elements
(LPEs) as shown by the example of figure 4. The LPEs

Ch. 0

Ch. 1 Ch. 1

Ch. 0

LPE0 LPE2LPE1

+

z
-2

z
-1

z
-2

+

+ +

z
-1

+ +

z
-1

+

+

+

+

+

+

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
0

c
10

c
12

c
13

c
11

Ch.0

Ch.1

Ch.2 +

Ch.0

Ch.1

Ch.2

Ch. 2 Ch. 2

Fig. 4. Mapping of a SFG obtained by a factorized 3-
channel filter bank onto a LPE array consisting of 3 LPEs

are chained to form a one dimensional array, where each
LPE is receiving partial results from its predecessor. Such
kind of configuration can be considered as a coarse grained
pipeline, where the number of pipeline stages equals the
number of LPEs.

Since the amount of available LPEs is a variable param-
eter, the architecture features a scalability with respect to
the maximum data throughput. By increasing the number
of available LPEs, the arithmetic unit of one LPE has to
process fewer operations of the whole SFG, which finally
results in a higher data throughput.

The partitioning of a SFG requires to formulate the SFG
as a sequence of so called LPE instructions. LPE instruc-
tions are considered as built-in instruction codes, which con-
trol the data paths. The finite state machine of a LPE is im-
plicitly defined by looping through the instruction sequence
of the LPE. A lifting step Λi,j [λ(z)] containing a polyno-
mial λ(z) with n ∈ N coefficients can be realized by n LPE
instructions. For this purpose the lifting step Λi,j [λ(z)] has

to be decomposed into n lifting steps with only one poly-
nomial coefficient, since each LPE instruction can process
a single coefficient. Equation 11 shows this decomposition
step.

Λi,j [λ(z)]=

n∏
k=0

Λi,j [ck ·z
k] , with λ(z)=

n∑
k=0

ck ·z
−k (11)

With consideration of the SFGs data dependencies, the set
of all LPE instructions is distributed among all LPEs, while
each LPE processes the same number of LPE instructions.
If the total number of LPE instructions is an integer multiple
of the number of available LPEs, the architecture performs
an optimal resource utilization, since all arithmetic units of
the data path are busy in each clock cycle. Using this design
technique enables the necessary flexibility to adapt a LPE to
any mapped SFG partition.

3.2. LPE Design

A LPE basically consists of one multiplier, one adder, a
variable amount of registers and a memory for LPE instruc-
tions [7]. Figure 5 shows the architecture of a LPE, whose
elements are briefly discussed below.

Channel Registers

.

.

Ch. 0

Ch. 1

.

.

.Ch. M-1

Ch. 1

Ch. M-1

Ch. 0

Local Registers

Arithmetic Unit

Instruction
Memoryc

.

.

.

.

.

.

.

.

.

x+

‘0’

R [0,0]C R [0,1]C R [0,L -1]C C, 0

R [1,0]C R [1,1]C R [1,L -1]C C, 1

R [M-1,0]C R [M-1,L -1]C C, M-1

R [0,0]L R [0,L -1]L L, 0

R [N-1,L -1]L L, N-1
R [N-1,0]L

Fig. 5. Basic architecture of a LPE

The registers of a LPE are classified into channel reg-
isters RC [i, j] and local registers RL [k, l], whereas each
category consists of several shift register banks subscripted
by i and k respectively. Channel registers are embedded
into the data path of the channels. They are used for com-
munication between the neighbouring LPEs and for the re-
alization of delay elements, resulting from the residual po-
lyphase matrix. Local registers store partial results, which

V - 119

➡ ➡

are only needed within the particular LPE. They are used to
realize delay elements of lifting steps. The actual length of
the shift register banks LC,i and LL,k and the total number
of local shift register banks N in each LPE is adapted to its
mapped SFG partition.

As already mentioned, the sequential behaviour of a LPE
is defined by a sequence of LPE instructions, which are
stored in the instruction memory. The instruction code for
each LPE instruction is mainly formed by an opcode opc,
several register addresses and a constant c embedding a poly-
nomial coefficient. The five distinct types of LPE instruc-
tions are shown in table 1, whereas b refers any channel reg-
ister and a refers any channel or local register. The instruc-

opc Arithmetic Parallel Shift
Operation Operation

MAC b ← b + a ∗ c NO
MUL b ← a ∗ c NO
MAC SFT b ← b + a ∗ c YES
MUL SFT b ← a ∗ c YES
NOP — NO

Table 1. LPE instructions

tion MUL performs a coefficient multiplication and MAC

performs a coefficient multiplication followed by an addi-
tion. MAC SFT and MUL SFT are extended versions
of MAC and MUL, which concurrently shift a partial re-
sult from a channel register into a local shift register bank.
Lifting steps are realized by MAC and MAC SFT in-
structions. MUL and MUL SFT are used for implement-
ing polynomials of the residual polyphase matrix. NOP in-
structions have to be inserted into the instruction sequence
of a LPE, if the number of allocated LPEs does not divide
the total number of LPE instructions.

4. RESULTS

To demonstrate the efficiency and flexibility of our architec-
ture, we present some results about the FPGA implemen-
tation of a lifting factorization, resulting from a 3-channel
multirate filter bank [6]. Due to the lifting factorization,
the computational complexity reduced from 24 to 14 mul-
tiplications compared to a non-factorized filter bank. The
filter bank was implemented on a Xilinx Virtex II FPGA
with a 18 bit data path for coefficients and intermediate re-
sults. Table 2 summarizes the results. We have realized the
lifting factorization with different number of LPEs to show
the adaptability respecting the maximum data throughput of
our architecture. The data throughput shown in table 2 con-
cerns the sum of all three channels and resource usage is
measured in terms of gate equivalent counts, as reported by
the place and route tool.

LPE # Register Resources Throughput
/ # GE / MSPS

1 10 8231 18.2
2 13 13371 38.8
3 16 18215 53.7
4 19 22953 69.6
5 22 27681 96.5
7 28 37238 146.1

Table 2. Results of 3-channel filter bank architectures

5. CONCLUSION

We have presented a VLSI architecture based on lifting fac-
torizations for M-channel multirate filter banks. The archi-
tecture is capable to implement arbitrary lifting factoriza-
tions on a variable amount of arithmetic resources. More-
over, we have presented results about the implementation of
the proposed architecture on a Xilinx Virtex II FPGA.

6. REFERENCES

[1] I. Daubechies, W. Sweldens, Factoring wavelet trans-
forms into lifiting step, Tech. Rep., Bell labs, 1996

[2] W. Sweldens, The lifting scheme - A construction sec-
ond generation wavelets, SIAM J. Math. Anal, vol. 29,
no. 2, pp. 511, 1997

[3] K. Andra, C. Chakrabarti, T. Acharya, A VLSI Archi-
tecture for Lifting-Based Forward and Inverse Wavelet
Transform, IEEE Transactions on Signal Processing,
vol. 50, no. 4, pp. 966, April 2002

[4] P.-Y. Chen, VLSI Implementation for One Dimen-
sional Multilevel Lifting-Based Wavelet Transform,
IEEE Transactions on Computers, vol. 53, no. 4, pp.
386, April 2004

[5] C.-T. Huang, P.-C. Tseng, L.-G. Chen Efficient VLSI Ar-
chitectures of Lifting based Discrete Wavelet Transform
by Systematic Design Method, IEEE International Sym-
posium on Circuits and Systems, vol. 5, pp. 565, 2002

[6] Y.-J. Chen, K. Amaratunga M-Channel Lifting Factor-
ization of Perfect Reconstruction Filter Banks and Re-
versible M-Band Wavelet Transforms, IEEE Transac-
tions on Circuits and Systems II, Analog and Digital
Signal Processing, vol. 50, no. 12, pp. 963, December
2003

[7] R. Bartholomä, T. Greiner, F. Kesel A Lifting based
VLSI Architecture for M-Channel Multirate Filter
Banks, Tech. Rep., Pforzheim University, July 2004

V - 120

➡ ➠

