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ABSTRACT

In our earlier investigations on developing multiplierless

structures for digital recursive filters, we have shown that

utilizing low-sensitivity structures and appropriate trans-

formations it is possible to generate multiplierless imple-

mentations of bandpass and bandstop filters. The schemes

are quite attractive when we allow marginal deviations in 

the specifications, or start with a design of marginally

stricter specifications than the desired specification with-

out any increase in the filter order leading to quite low

requirements of nonzero bits. In this paper we present

results for the structure that employs the low-sensitivity

characteristics of the all-pole type of structure for develop-

ing multiplierless implementations of bandpass and band-

stop digital recursive filters transformed from all-pole

lowpass filters. 

1. INTRODUCTION

In multiplierless implementations of digital filters, the
minimum number of signed powers of two (MNSPT) or
canonic signed digits (CSD) representations of binary dig-
its are extensively used for representing the multiplier
coefficient values. An MNSPT representation of a coeffi-

cient value is given by where each a

i

t
i

ia ,2 i is either 1 

or –1 and ti is a positive or negative integer and the multi-
plication can be performed with the aid of bit shifts and
adds (in this paper, adds will mean to include adds and/or
subtracts).

For instance, 1.93359375 can be realized as 2 2 4 2 8.
In this case, the multiplication is achieved not by a nine-
bit multiplier, but with aid of three bit shifts and two sub-
tracts.

One major approach for multiplierless implementations

comprises of that of optimization [11, 12], i.e., searching

for the coefficients such that they can be implemented in 

MNSPT forms and the given criteria are still met. Optimi-

zation methods are used to find the optimal transfer func-

tions under the given constraints with the filter design

being basically a problem of approximation due to the

tolerances in specifications. In general, the methods of

optimizations are considered to be quite satisfactory.

However, one may not assure or guarantee that the opti-

mal solution will always be found under the given con-

straints. The solution can be unsatisfactory, for example,

in terms of the filter order, the given wordlength of the 

multipliers, or the specified number of shifts and adds (in

the case of the multiplierless implementation), or some

combination of them. Under such conditions, some pa-

rameters or characteristics of the filter will have to be re-

laxed to obtain an acceptable design for use in the in-

tended system.

In the case of IIR filters, the structures such as a sum of

two allpass filters, including attractive lattice wave digital

(LWD) filters, coupled with optimization methods have

shown to yield good results for multiplierless implementa-

tions [6, 7, 11, 12]. These sums of allpass filters are char-

acterized by the attractive property that there exist struc-

tures with the number of required multipliers being equal

to the filter order, thereby decreasing the number of multi-

pliers compared with conventional realization forms.
Another interesting approach is the one that stems from

designing an odd-order elliptic minimal Q-factor analog
filter (EMQF) that has some special properties. Using the
bilinear transformation these filters can be implemented as 
a sum of two allpass filters [6, 7] along with an expanded
design parameters space as the passband (stopband) toler-
ances, the edges, and the filter order.

The authors of this paper have been investigating the
multiplierless realization of the recursive digital filters [1,
2, 8] based on the certain observations.

Firstly, it was seen that in certain cases of the low-
sensitivity structures [3, 4], the modified coefficients are 
quite low, those will require fewer number of nonzero bits
to represent them in MNSPT forms; this results in fewer
number of operations in terms of shifts and adds. So, these
classes of structure became the candidates for further in-
vestigation.
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Secondly, it was also observed that the requirement of 
nonzero bits can be reduced further if instead of designing
exactly to the given specification, one starts by designing
with a stricter specification without any increase in the
order of the filter, followed by quantization to the level
such that the initial specifications are met [1, 2, 8]. As an
illustration, if our goal passband tolerance is 0.5 dB, we 
may start with a design of 0.3 dB (without any increase of
the order of the filter) and then quantize the coefficients
such that the goal passband of 0.5 dB or less is achieved.

Thirdly, in the case of bandpass filters (BPFs) or band-
stop filters (BSFs), it is always advantageous to use ap-
propriate second-order substitution block to replace the
unit delay element, for transforming a prototype lowpass
filter (LPF) [2, 4]. In this case, we gain from two advan-
tages that of firstly the reduced number of multiplier re-
quirement and secondly the inherent low sensitivity of the

multipliers (explained in the next section) in the substi-
tution blocks [2, 4]. A second-order LPF section is real-
ized as a fourth-order section for transforming it to a 
BPF/BSF section.

In this paper, we show that it is feasible to transform a 
all-pole LPF to a multiplierless BPF/BSF in such a man-
ner that the requirements of nonzero bits are equally at-
tractive compared to our earlier results.

2. THE STRUCTURES FOR REALIZATION

The fourth-order structure of the BPF/BSF that is being

transformed from a second-order LPF with transfer func-

tion

H(z) = 1/(1 + a1z
–1 + a2 z

–2)  (1)

is depicted in Fig 1.

The transformation blocks vi
1, i 1, 2, are shown in Fig. 2.

As will be explained in the following paragraphs, these

two blocks are not interchangeable and are specific to the

second-order section of the LPF being transformed to a

fourth-order section, as the modified coefficients are con-

tained in them.

Here, k1 and k2 are of the form , where each

is either 1 or 1 and each  is an integer. These multi-

pliers can be realized by using a few bit shifts and adds.
Normally, the maximum of three bits for k

i

it
ip 2

ip it

1 and two bits
for k2 are sufficient to reduce the sensitivity below that of
the majority of other structures [3]. The values of k1 and k2

are chosen depending on the radius and angle of the pole
pair of the second-order LPF as given by (1). The corre-

sponding pole pair is located at withjrez

cos21 ra and 2

2a r .

The expressions for vi
1, i 1, 2, are given by

21

12
1

)1(1

)(

zakzak

zzk
v

imtimt

t
i . (2)

In (2), kt is equal to 1 in the case of BPFs, and is equal to 

1 in the case of BSFs. Also, a1m and a2m are the modified

multiplier coefficients and are given by

a1m = (2k1 a1+x)/2 and a2m= (a1+x)/2 for 0<

and

a1m= (2k1 a1 x)/2 and a2m= ( a1+x)/2 for <

Here,
 (i) x = (a1

2 – 4a2 +4k2)
1/2.

 (ii) k1 is a few bit  approximation closest to

(a1 x)/2  for 0< and

(a1+x)/2 for <
(iii) k2 is a few bit approximation closest to a2 with

k2 being chosen before k1 ensuring that x re-
mains real [3].

The multiplier is given by (as in[5])

cos[ 2/)( 12 ]/cos[ 2/)( 12 ]=cos 0 , (5)

where ,, 10 2 , and s  are the center frequency, and

the  lower and upper passband edges, and the sampling

frequency, respectively. This relation is valid only for the

case of BPF’s with the passband bandwidth )( 12

being equal to that of the prototype LPF, and in the case of

BSF’s with )( 12  (i.e., the region including the tran-

y(n)
v1

1 v2
1

k1

k2

x(n)

Fig. 1. Modified fourth-order section. 

z 1 z 1

aim

kt

Fig. 2. Transformation block vi
1.
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sition bands and the stopband of the BSF) equaling

2/( s the bandwidth of the LPF) [4, 5].

It is quite obvious that when implementing this fourth-

order section, we will need four multipliers including the

two multipliers, whereas a conventional implementa-

tion by a cascade of the two second-order sections (as

obtained by the factorization after the transformation to a 

BPF/BSF) would have required total of six multipliers

(three multipliers per second-order section) [2, 4].

3. RESULTS AND DISCUSSIONS

Realizations of quite a few bandpass and bandstop filters 
transformed from all-pole filters were experimented as 
described in the earlier section. The all-pole filters were 
designed according to the very simple design scheme de-
scribed in [9, 10]. For most of the cases one bit is suffi-
cient for each k1 and k2.

Tables 1 and 2 illustrate the results for the implementa-
tion for one bandpass filter and one bandstop filter. In 
both cases, eighth-order all-pole LPFs were used for trans-
formation to 16th-order BPF/BSF. The second-order sec-
tions of the all-pole LPF were transformed into fourth-
order sections as depicted in Figures 1 and 2. Quantization
effects at various levels of fixed point arithmetic (exclud-
ing sign bits) were studied for feasibility of multiplierless
realization as described subsequently.

Firstly, the filters were realized in the unmodified
manner as a cascade of fourth-order sections, where the
unit delay elements of the second-order sections of the all-
pole LPF as in (1) is replaced by the conventional second-
order substitution block [2, 4] as expressed below.

)1/()( 1121 zzzkz t (6)

As mentioned earlier, kt is equal to 1 in the case of BPFs,

and is equal to 1 in the case of BSFs. 
Quantization of the multipliers were carried out to de-

termine the level of quantization at which the specification
can be met followed by the representation in the MNSPT 
form that gives the requirement of nonzero bits (illustra-
tion of this aspect is shown in the note of both Tables 1
and 2).

In the next phase the realization of the sections were
carried out in the modified manner and quantization ef-
fects at some levels (some of them also show the degrada-
tion of the passband tolerances; no significant degradation
in stopband tolerances are observed, and hence not men-
tioned in the tables, as expected within the range of obser-
vation) along with the requirement of nonzero bits are 
made as earlier and are shown.

This is followed by designing another prototype all-
pole LPF of the same order, but with the stricter passband
tolerance and transforming this LPF to the modified form,
as in the earlier phase; quantization was made so that the 
initial desired specifications are met.

Table 1. Requirement of nonzero bits for 

the example bandpass filter.

Bandpass filter (16th-order)

passband edges: 0.3 , 0.4

 stopband edges: 0.275 , 0.432

passband ripple: 0.5 dB; stopband  attenuation: 50 dB 

Number of nonzero bits 

for 16 multipliers

Passband tolerances obtained 

(a) 85

(b) 83

(c) 80

(d) 53

0.4955 dB designed with initial

specification

0.514 dB    ……”………

0.5325 dB …..”……..

0.33 dB designed with revised

specification of passband

ripple of 0.2 dB of the

prototype LPF.

Note: Cascade realization of unmodified 4th-order sections

needs 22-bit multipliers for coefficients and 16-bit

multipliers for multipliers (equivalent to a total of 

115 nonzero bits in MNSPT form representation)

Table 2. Requirement of nonzero bits for 

the example bandstop filter.

Bandstop filter (16th-order)

passband edges: 0.05 , 0.85

 stopband edges: 0.081 , 0.765

passband ripple: 0.5 dB; stopband  attenuation: 50 dB 

Number  of nonzero bits 

for 16 multipliers

Passband tolerances obtained 

(a) 95

(b) 91

(c) 88

(d) 82

(e) 53

0.499 dB designed with initial

specification

0.5007 dB    ……”………

0.501 dB …..”……..

0.506 dB ……”…….

0.448 dB designed with revised

specification of passband

ripple of 0.2 dB of the pro-

totype LPF.

Note: Cascade realization of unmodified 4th-order sections

needs 17-bit multipliers coefficients and 15-bit multi-

pliers for multipliers (equivalent to a total of 97 

nonzero bits in MNSPT form representation)

From the results of the Tables 1 and 2, we note that on

the average about 3.5 nonzero bits per multiplier is suffi-

cient to realize the BPF/BSF in a multiplierless manner.

This result is very much similar to our earlier investiga-

tions [1, 2, 8].
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Fig. 3. Amplitude responses for the infinite-precision BPF filter 
with stricter criteria (dashed line) and for the filter with fifty-
three nonzero bits (solid line).

Further, it was also seen that by allowing marginal de-

viations in the band edges (by reducing the number of

nonzero bits for multipliers only), an additional reduc-

tion in the number of nonzero bits can be achieved. For

example, in the case of the BPF, 45 nonzero bits (a reduc-

tion of one bit in each of the eight multipliers leading

to less than three nonzero bits per multiplier on the aver-

age) leads to the filter with the passband edges being lo-

cated at {0.2965  0.3971 . The corresponding stopband

edges are located at {0.2723  0.4278

Similarly, the use of 37 nonzero bits (a reduction of

two bits in each of the eight multipliers again leading

to less than 2.5 nonzero bits per multiplier on the average)

for the multipliers for the BSF leads to a filter with the

passband and the stopband edges being located at

{0.05092 , 0.8497 } and at {0.0813 , 0.766 },

respectively. Such shift in band edges may be considered

insignificant for most of practical applications.

4. CONCLUSIONS

In this paper, we have shown that the multiplierless im-

plementation of BPFs and BSFs utilizing transformation

structures suitable for transforming all-pole LPFs, is a 

feasible and attractive proposition. Considering the accep-

tance of a marginally small deviation in the passband and

stopband tolerance specifications compared to the initial

infinite-precision design, the method becomes quite attrac-

tive for implementing IIR BPFs and BSFs in the multi-

plierless manner. Our analysis indicates that utilizing the

approach outlined multiplierless realizations can be

achieved by using less than four nonzero bits per multi-

plier on the average without any increase in the filter or-

der. Future work is devoted to applying optimization tech-

niques to further reducing the number of nonzero bits.
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