
A NEW RECONFIGURABLE BIT-SERIAL SYSTOLIC DIVIDER FOR GF (2M) AND GF (P).

Aaron E. Cohen and Keshab K. Parhi

University of Minnesota Twin Cities
Department of Electrical and Computer Engineering

{aecohen, parhi}@ece.umn.edu

ABSTRACT

This paper focuses on the design of a new dual field divider
that can achieve performance of 1/m throughput. This dual
field division unit can operate at 118 MHz with a latency
of 7m − 2 cycles and has an area requirement 15 XOR2,
40 AND2, 29 MUX2, and 7 INV gates per processing
element with a total of 2m processing elements. It is in-
tended to be used in an Elliptic Curve Crypto-Accelerator
for GF (2m) and GF (p). The actual performance for scalar
point multiplication in GF (2571) running at 100 MHz would
be 20.4 kP/s. The actual performance for scalar point mul-
tiplication in GF (p) with |p| = 521 running at 100 MHz
would be 24.4 kP/s.

1. INTRODUCTION

In the mid 1980’s the elliptic curve cryptography (ECC) was
developed independently by Miller and Koblitz. This new
invention allows public key cryptosystems to be developed
for smaller key sizes but with comparable security strength
to the RSA cryptosystem. This advantage, smaller key size
with similar security strength, does not come free. Elliptic
curve cryptosystems have higher hardware complexity than
systems built for the RSA Cryptosystem. One of the ad-
ditional mathematical requirements for elliptic curve cryp-
tosystems is modular division, also known as finding the
inverse in a field. This can be accomplished with one of the
Extended GCD algorithms. These algorithms are extensions
to regular GCD algorithms.

The binary GCD algorithm [1] is well known to lend
itself to fast hardware implementations. Therefore it was
only natural that an extension of the binary GCD algorithm
be implemented to perform division in Galois fields such as
GF (2m) or GF (p). To the best of our knowledge recon-
figurable dual field, GF (2m) and GF (p), modular dividers
have not been previously designed.

The importance of Modular Division (i.e. division in
GF (p)) is driven by cryptographic signature algorithms. Sim-
ilarly the new public key algorithms based on elliptic curve
cryptography are driving the importance of large scale divi-
sion units in both GF (2m) and GF (p). The difficulty with

routing signals for large scale implementations have led de-
signers to look for various methods to avoid this problem
such as systolic array architectures. Naturally systolic archi-
tectures [2] are one of the more efficient ways to implement
the extended binary GCD algorithm in hardware.

This paper is organized as follows. Section II presents
previous research in the area of GCD hardware implemen-
tations. Section III describes a general background on how
the binary GCD algorithm works. Section IV presents the
proposed dual field divider. Then Section V provides a con-
clusion and a brief discussion of potential future research
ideas.

2. RELATED WORK

The pioneering work in systolic arrays and the binary GCD
hardware implementations was accomplished by Brent and
Kung [3]. Their design lacked the ability to compute the
inverse and it lacked the ability to switch its computation
from either GF (2m) or GF (p) to the other field.

Recently, an implementation of the MSB first divider
for GF (2m) was first presented in [4]. This systolic array is
based on the Extended Euclidean GCD Algorithm [1]. This
architecture achieves a throughput of 1/m, with a critical
path of TAND2 + 3TXOR2 + TMUX2, latency of 5m − 4,
and area requirements of 2m processing elements with each
containing 11 MUX2, 7 AND2, and 5 XOR2.

More recently, the LSB first divider unit was designed
in [5] for GF (2m). The LSB first divider is a systolic array
based on the Extended Binary GCD Algorithm [1]. This
architecture achieves a throughput of 1/m, with a critical
path of TAND2 + 2TXOR2, latency of 5m− 2, and area re-
quirements of 2m processing elements with each containing
7 MUX2, 12 AND2, 1 OR2, 4 XOR2, and 7 INV .

There are alternative inverse algorithms designed to work
with the N -Residues used primarily with Montgomery Mul-
tipliers [6]. These are referred to as the Almost Montgomery
Inverse architectures in [7–9].

V - 1050-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

3. BACKGROUND

The extended binary GCD algorithm dates back to antiquity.
It is only recently that it has become more important due to
its relative simplicity for conversion to hardware implemen-
tations. A simple explanation of the binary GCD algorithm
is listed below.

Algorithm: Binary GCD Algorithm [1]

K1. [Initialize] Set c ← 0.
K2. [Done?] If v = 0, terminate with |u| as the answer.
K3. [Make v odd] Set v ← v/2 and c ← c + 1

zero or more times, until v is odd.
K4. [Make c ≤ 0] If c > 0, interchange u ↔ v

and set c ← −c.
K5. [Reduce.] Set w ← (u + v)/2.

If w is even, set v ← w; otherwise set v ← w − v.
Return to step K2.

The binary GCD algorithm as well as the extended bi-
nary GCD algorithm require the following three rules for
calculating the GCD.

Table 1: GCD Simplification Rules

Rule u v (u+v)
2

GCD(u, v) =
1 odd even GCD(u, v/2)
2a odd odd even GCD(u, (u + v)/4)
2b odd GCD(u, (u − v)/4)
3 even even 2 ∗ GCD(u/2, v/2)

The main idea is when adding or subtracting in GF (p)
it is not guaranteed that the number of bits to represent the
result will be less than the number stored in v. However if
the result of the division after the addition or subtraction is
even then the number of bits to represent the result will be
reduced and hence our new modified Binary GCD algorithm
will terminate. It can be proved that the algorithm will fin-
ish in 2m = 2 log2(max(u, v)) + 2 iterations because it is
necessary to swap u and v such that the smaller odd number
is stored in u until v is reduced.

4. DISCUSSION

4.1. New Modified Extended Binary GCD Algorithm

The key requirements of the New Modified Extended Bi-
nary GCD Algorithm is first U must be odd at all times in
the algorithm. Otherwise, rule 3 must be applied which can
be implemented easily by shifting.

Algorithm: New Modified Extended Binary GCD Algorithm

Inputs: A, B, G
Outputs: R = A/B mod G
Initialize: U = G, V = B, S = A, R = 0,

state = 0, count = 0
for i = 1 to 2m do

UpV = (U + V); UmV = (U − V);
RpS = (R + S); RmS = (R − S);
if (mode == 1) then

UpV = UpV/2; UmV = UmV/2;
if (RpS[0] == 1) then RpS = (RpS − G);
RpS = RpS/2;
if (RmS[0] == 1) then RmS = (RmS + G);
RmS = RmS/2;

if (state == 0) then
count = count + 1;
if (V [0] == 1) then

state = 1; U = V ; R = S;
else

count = count − 1;
if (V [0] == 1) then

if (UpV [0] == 1) then
V = UpV ; S = RpS;

else
V = UmV ; S = RmS;

if (count == 0) then state = 1;
if (S[0] == 1) then S = S + G;
V = V/2; S = S/2;

It is important to note that the result may not be in the
correct range (0 ≤ R < p) because of the lack of inter-
mediate sign testing. Therefore for other functional units it
may be necessary to bring the result into the correct range
(0 ≤ R < p). This can be accomplished by a correction
phase.

4.2. Systolic Array Implementation

Systolic arrays [2] contain two important features which
make designing systolic architectures very powerful. Firstly,
they achieve nearest neighbor communication. Therefore
they do not contain long interconnect wires. Secondly they
are easy to pipeline therefore they do not contain long criti-
cal paths.

Our modified Extended Binary GCD algorithm can be
descibed by a data flow graph as in Fig. 1.

The square boxes correspond to control logic whereas
the circular boxes correspond to the data processing ele-
ments.

The additional mode control signal specifies which method
to use GF (2m) or GF (p).

mode =
{

1, GF (p)
0, GF (2m)

One could essentially run GF (2m) divisions immedi-
ately after GF (p) divisions and vice versa simply by chang-
ing the value of the mode signal.

V - 106

➡ ➡

Sign Extension

j

i

m

2m
co

nt
ro

l l
og

ic

...

...

...

...

...

Figure 1: Data Flow Graph

...21 2m

Vin

Sin

Uin
Rin
Gin

0...01
Mode

0

Uout
Rout

Vd4

inc

state

mode

sqr

G

R

U

dec

Gd2

Ud2

Sd2

Rd2

Vd2

Sd4

Vd4

inc

state

mode

sqr

G

R

U

dec

Gd2

Ud2

Sd2

Rd2

Vd2

Sd4

inc

state

mode

sqr

G

R

U

dec

Gd2

Ud2

Sd2

Rd2

Vd2

Sd4

Vd4

Figure 2: Pipelined Bit Serial LSB First Divider

It is possible to generate an LSB first bit-serial dual
field divider by using the following projection vector (dT =
(0, 1)), scheduling vector (sT = (3, 1)), and processor space
vector (pT = (1, 0)) as in Fig. 2. These values are ex-
tremely efficient because they lead to a hardware utilization
efficiency of 100 percent (i.e. |dT s| = 1).

Table 2: Signals and Delays
eT pT e sT e

v, s (1,-2) 1 1
dec,v, u, r, s, g (1,-1) 1 2
ctrl,u, r, g (1,0) 1 3
ctrl,carries (0, 1) 0 1
inc (1, 1) 1 4

4.3. Performance

The performance of the dual field division unit is deter-
mined by the critical path in the processing elements and the
latency through the division unit. A careful analysis shows
that the critical path (CP) is TCP = 5TMUX + 3TXOR.
The latency through the division unit is determined by the
number of delay elements along the control signal path. The
bit-serial divider requires m bits input, then each pipeline
adds a three cycle delay for a total of 6m−3 cycles through
the unit, plus 1 for the pipelined input. Therefore the total
latency is 7m − 2 cycles.

The area is determined by the number of logic gates in
each processing element times the number of processing el-
ements. There are 2m processing elements and each one

consists of 15 XOR2, 40 AND2, 29 MUX2, and 7 INV
gates.

For this project a VHDL description was designed and
synthesized with Xilinx’s ISE 6. Analysis in Xilinx Tim-
ing Analyzer revealed a critical path latency of 8.470 ns
which effectively indicates an operational frequency of 118
MHz. Therefore a target frequency of 100 MHz can easily
be achieved on a field programmable gate array (FPGA).

4.4. Elliptic Curve Cryptography

The complexity of scalar point multiplication for elliptic
curve cryptography in affine coordinates is

TCycles = 1TADD + 3 + O(m) ×
(1TDIV + 3TMLT + 2TSQR + 4TADD + 2) +

O

(
m

3

)
×(1TDIV + 1TMLT + 1TSQR + 8TADD

+1) + 1 ≈ 45

3
m2 + 9m + 5

Substituting into the previous equation with TMLT = TSQR =
m, TDIV = 7m, and TADD = 1 then the total cycles for
one scalar point multiplication becomes TCycles = 45

3 m2 +
9m + 5.

The same scalar point multiplication operation can be
accomplished in what is known as projective coordinates
with a cycle complexity of

TCycles = 1TADD + 3 + O(m) ×
(7TMLT + 5TSQR + 4TADD + 2)

+O

(
m

3

)
×(13TMLT + 1TSQR + 7TADD + 1)

+TCTA + 1 ≈ 56

3
m2 +

26

3
m + 5

The total cycles can be computed with the values TMLT =
TSQR = m, TADD = 1, TCTA = 2m2 then the total cy-
cles for one scalar point multiplication becomes TCycles =
56
3 m2 + 26

3 m + 5.
Therefore the division unit provides a performance speedup

of 1.24 times the performance without a division unit.
Given a 100 MHz clock speed using affine coordinate

scalar point multiplication the total scalar point multiplica-
tion per second (kP/s) for GF (2571) is

(100 × 106 cycles per second)

(45
3

(5722) + 9(572) + 5 cycles per kP)
≈ 20.4 kP/s

Similarly, for a 100 MHz clock speed using affine coordi-
nate scalar point multiplication the total scalar point multi-
plication per second (kP/s) for GF (p) where |p| = 521
is

(100 × 106 cycles per second)

(45
3

(5222) + 9(522) + 5 cycles per kP)
≈ 24.4 kP/s

4.5. Comparison

In [4,5] m is defined to be the highest order in the reduction
polynomial but our definition of m is it includes all the bits

V - 107

➡ ➡

and the highest order bit.

Table 3: Field Divider Comparison
[4] [5] Fig. 2

GF (2m) Yes Yes Yes
GF (p) − − Yes
Throughput 1

m−1
1

m−1
1
m

Latency
GF (2m) 5m-9 5m-7 7m-2
GF (p) − − 7m-2

Critical TAND2+ TAND2+ 5TMUX2+
Path 3TXOR2+ 2TXOR2 3TXOR2

TMUX2

Gates / PE
MUX2 11 7 29
AND2 7 12 40
OR2 0 1 21
XOR2 5 4 15
INV 0 7 7

There are a few things one can observe in Table 3. First,
there are significantly more multiplexors in the dual field di-
vider design. These additional multiplexors are due to the
sign extension and the dual field option. Similarly an in-
creased number of gates are required to minimize the criti-
cal path. This architecture was designed without the option
to change the number of pipelining cutsets based on which
processing mode the system is in. It would not be difficult
to add this feature and a substantial boost would be added to
the GF (2m) mode because it does not require the division
by 4 path. Also, the assumption of the lowest order bit being
one was not made which accounts for an additional cycle
and limits the throughput to 1

m instead of 1
m−1 as in [4, 5].

5. CONCLUSION

Our contributions are the LSB first bit-serial dual field di-
vider for GF (2m) and GF (p) and its performance analysis
for elliptic curve scalar point multiplication.

Our research has confirmed that dual field divider units
are feasible for hardware implementations. With dual field
divider units it is possible to increase scalar point multipli-
cation in elliptic curve cryptography 1.24 times.

Future research includes minimizing the critical path,
overall latency, and power because these are important ar-
chitectural optimizations. Secondly, it may be possible to
extend this technique to an implementation of the Extended
Euclidean GCD Algorithm. Thirdly, it may be possible to
obtain an increased speedup with an early exit path. Fi-
nally, designing a dual field divider with a form of redundant
arithmetic would be useful in minimizing the overall latency
however this cannot be done without increasing wire delays.

6. REFERENCES

[1] D. E. Knuth, The Art of Computer Programming,
Addison-Wesley, 1997.

[2] K. K. Parhi, VLSI Digital Signal Processing, Wiley &
Sons, 1999.

[3] R. P. Brent and H. T. Kung, “Systolic VLSI arrays for
polynomial GCD computation,” IEEE Transactions on
Computers, vol. C-33, pp. 731–736, 1984.

[4] J. Guo and C. Wang, “Bit-Serial Systolic Array Imple-
mentation of Euclid’s Algorithm for Inversion and Di-
vision in GF (2m),” IEEE International Symposium on
VLSI Technology, Systems, and Applications, pp. 113 –
117, June 1997.

[5] C. Kim, S. Kwon, C. P. Hong, and G. I. Nam, “Efficient
Bit-Serial Systolic Array for Division over GF (2m),”
International Symposium on Circuits and Systems, IS-
CAS, vol. 2, pp. 252–255, 2003.

[6] P. Montgomery, “Modular Multiplication Without Trial
Division,” Mathematics of Computation, vol. 44 no.
170, pp. 519–521, April 1985.

[7] B. S. Kaliski Jr., “The Montgomery Inverse and Its Ap-
plications,” IEEE Transactions on Computers, vol. 44
no. 8, pp. 1064–1065, 1995.

[8] E. Savas and C. K. Koc, “The Montgomery Modular
Inverse - Revisited,” IEEE Transactions on Computers,
vol. 49 no. 7, pp. 763–766, 2000.

[9] A. A.-A. Gutub, A. F. Tenca, and C. K. Koc, “Scalable
VLSI Architecture for GF(p) Montgomery Modular In-
verse Computation,” IEEE Computer Society Annual
Symposium on VLSI, pp. 53–58, 2002.

V - 108

➡ ➠

