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ABSTRACT

H.264/AVC is the latest standard for video coding drafted 

jointly by the ISO/IEC Moving Picture Experts Group and 

the ITU-T Video Coding Experts Group. H.264/AVC 

provides up to 50% gains in compression efficiency over 

a wide range of bit rates and video resolutions compared 

to previous standards. On the other hand, the decoder 

complexity is about four times that of MPEG-2 and two 

times that of MPEG-4 Visual Simple Profile. In VLSI 

implement of H.264/AVC decoder, off-chip memory 

access is the main time and power consuming operation, 

and motion compensation module is the main memory 

access bottleneck. This paper proposes four optimization 

strategies to reduce memory access data cycles and 

improve memory data bus utilization. Experiment results 

show that about 60% data cycles can be reduced and more 

than 20% memory data bus utilization can be improved by 

these strategies over typical test sequences. 

1. INTRODUCTION 

H.264/AVC adopts a series of new techniques to improve 

coding efficiency, such as flexible block size and quarter-

pixel motion compensation, spatial intra prediction, in 

loop de-blocking filters and context-based adaptive binary 

arithmetic coding etc. As a result, H.264/AVC gains up to 

50% in compression efficiency over a wide range of bit 

rates and video resolutions compared to previous 

standards. On the other hand, the decoder complexity is 

about four times that of MPEG-2 and two times that of 

MPEG-4 Visual Simple Profile. In VLSI implement of 

H.264/AVC decoder, off-chip memory access is the main 

time and power consuming operation. 

There are four main modules require off-chip memory 

access in H.264/AVC decoder, which are reference 

picture store, de-blocking, display feeder and motion 

compensation. In addition, there some other off-chip 

memory access requirements such as stream store and 

motion vector store, as they are much less than the four 

main modules, they are ignored from consideration. Table 

1 lists the memory access ratio of each module in 

H.264/AVC decoder in the worst case. We can see that 

motion compensation module is the main memory access 

bottleneck of H.264/AVC decoder. Therefore, 

minimization of memory access operations is a key 

consideration in H.264/AVC decoder VLSI design.  

This paper utilizes the memory access behavior 

characteristics of motion compensation and proposes four 

optimization tragedies to reduce memory access data 

cycles and improve memory data bus utilization. 

Experiment results show that about 60% data cycles can 

be reduced and more than 20% memory data bus 

utilization can be improved by these strategies over 

typical test sequences. 

In section 2 the motion compensation memory access 

behavior of H.264/AVC decoder is analyzed in detail. 

Section 3 provides four optimization tragedies based on 

the motion compensation memory access behavior 

characteristics. Experiment results are presented in section 

4 and in section 5 a conclusion is given. 

Table 1. Memory access ratio of each H.264/AVC decoder 

module (W: frame width, H: frame height) 

Module name Max memory access bytes Ratio( )

Reference

picture store 

W*H + 2*(W/2)*(H/2) 10% 

De-blocking (W/16)*(H/16-1)*16*4*2*2 5% 

Display feeder W*H + 2*(W/2)*(H/2) 10% 

Motion

compensation 

(W/16)*(H/16)*16*(9*9+2*3*3)*2 75% 

Total 16*W*H  

2. H.264/AVC DECODER MOTION 

COMPENSATION MEMORY ACCESS BEHAVIOR 

ANALYSIS

H.264/AVC CODEC adopts block-based motion 

compensation, the same principle used by previous major 

coding standards since H.261. There are two main 

differences from other standards, one is the support for 
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variable block size and the other is fine sub-pixel motion 

vectors [2]. 

2.1. Tree structured motion compensation 

H.264/AVC supports variable motion compensation block 

sizes ranging from 16x16 to 4x4 luminance samples with 

many options between the two. The luma component of 

each macroblock  may be split up in 4 ways: 16x16, 16x8, 

8x16 or 8x8. Each of the sub-divided regions is a 

macroblock partition. If the 8x8 mode is chosen, each of 

the four 8x8 macroblock partitions within the macroblock 

may be split in a further 4 ways: 8x8, 8x4, 4x8 or 4x4. 

These partitions and sub-partitions give rise to a large 

number of possible combinations within each macroblock. 

This method of partitioning macroblocks into motion 

compensated sub-blocks of varying size is known as tree 

structured motion compensation. 

The resolution of each chroma component in a 

macroblock (Cb and Cr) is half that of the luma 

component. Each chroma block is partitioned in the same 

way as the luma component, except that the partition sizes 

have exactly half the horizontal and vertical resolution. 

2.2. Sub-pixel motion vectors 

Each partition in an inter-coded macroblock is predicted 

from an area of the same size in a reference picture. The 

motion vector between the two areas has sub-pixel 

resolution. The luma and chroma samples at sub-pixel 

positions do not exist in the reference picture and so it is 

necessary to create them using interpolation from nearby 

image samples.  

The interpolated sub-pixel samples are generated as 

follows. In the luma component of the reference picture, 

first the half-pixel samples are generated (Fig. 1). Each 

half-pixel sample that is adjacent to two full-pixel samples 

is interpolated from full-pixel samples using a 6 tap Finite 

Impulse Response (FIR) filter(1/32, -5/32, 20/32, 20/32, -

5/32, 1/32). Once all of the samples adjacent to full-pixel 

samples have been calculated, the remaining half-pixel 

positions are calculated by interpolating between 6 

horizontal or vertical half-pixel samples from the first set 

of operations. Once all the half-pixel samples are 

available, the quarter-pixel positions are produced by 

linear interpolation. In order to interpolate an M*N luma 

partition (M is the width and N is the height of current 

partition), an (M+5)*(N+5) reference data block is 

required to be read from off-chip memory. 

In 4:2:0 sampling format, quarter-pixel resolution motion 

vectors in the luma component will require eighth-pixel 

resolution vectors in the chroma components. Interpolated 

samples are generated at eighth-pixel intervals between 

full-pixel samples in each chroma component. In this case, 

two dimensions linear interpolation is used to produce 

every eighth-pixel chroma sample. In order to interpolate 

an M*N chroma partition, an (M+1)*(N+1) reference data 

block is required to be read from off-chip memory. 
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Fig.1. Full-pixel samples (shaded blocks with upper-case letters) 

and sub-pixel sample positions (un-shaded blocks with lower-

case letters) for quarter-pixel sample luma interpolation. 

3. MOTION COMPENSATION MEMORY ACCESS 

OPTIMIZATION STRATEGIES

From the analysis in section 2, we can see that since 

H.264/AVC support small block size motion 

compensation and quarter-pixel motion vector (luma 

component), more reference data is required to be read for 

motion compensation compared to previous standards and 

it is very significant to optimize motion compensation 

memory access in H.264/AVC decoder. In this Section 

four optimization tragedies of motion compensation 

memory access are proposed. To facilitate the evaluation 

of the optimization strategies we define several terms: 

Valid reference data: the necessary reference data during 

motion compensation. 

Data bus bandwidth: bit width of memory access data 

bus.

Data cycle:  the clock cycle during which reference data 

is read from off-chip memory. 

Data bus utilization: the ratio between valid reference 

data and reference data read in data cycles (the ratio may 

not be 100%, as valid reference data may not be aligned 

with memory data bus bandwidth). 

Data cycles per MB: the average data cycles needed by 

motion compensating an inter macroblock. 

3.1.Strategy 1: variable block size reference data 

reading

H.264/AVC adopted tree structure variable block size 

motion compensation, JM73 unified the variable block 

size into the smallest block size (luma in 4x4), then only 

the smallest partition interpolation module is competent in 

motion compensation. While the problem is that the 
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smallest partition motion compensation has to read more 

redundant reference data compared to variable block size 

motion compensation. Provided to predict a single 

direction luma component 8x8 partition, in the worst case 

valid reference data are 13*13=169 bytes, But when it is 

unified into four 4x4 blocks, to predict each 4x4 partition 

subsequently valid reference data is 9*9*4=324 bytes. As 

in Fig. 2, the gray part is redundant reference data of the 

up left 4x4 partition, the total redundancies (155 bytes) 

are nearly equal to the whole valid reference data of 

current 8x8 partition. It is expected that reading reference 

data from off-chip memory according to variable block 

size will save quite a lot of data cycles.  

4x4

4x4 4x4

4x4

Fig.2. The up left 4x4 block redundant reference data induced by 

divided 8x8 block into four 4x4 blocks (indicated by grey part). 

3.2. Strategy 2: direct interpolation scheme reference 

data read 

During sub-pixel motion compensation, two interpolation 

schemes can be selected [3]. One is subsequent 

interpolation scheme, where every pixel on every sub-

pixel position is interpolated; the other is direct 

interpolation scheme which only interpolates the sub-pixel 

positions that are used in the motion compensated 

prediction. In decoder, only one pixel in the sixteen 

positions is needed for motion compensation prediction, 

so direct interpolation scheme is adopted. Table 2 

summaries the interpolation filters and the valid reference 

data size for one M*N partition of each interpolation 

position as in Fig.1 (M is the width and N is the height of 

current partition). Data cycles can be further reduced by 

this strategy. 

Table 2. The interpolation filters and reference data size of one 

M*N luma partition 

Interpolation

position

Interpolation filters Valid reference 

data size 

One full-pixel 

position: G 

No interpolation 

necessary 

M*N

Positions a, b, c 6   tap horizontal 

filter

(M+5)*N

Positions d, h, n 6   tap vertical 

filter

M*(N+5)

Positions e, f, g, i, 

j, k, p, q, r 

6*6 tap filter (M+5)*(N+5) 

3.3. Strategy 3: Cb component and Cr component  

combined  reference data reading 

Cb and Cr component of one partition share the same 

motion vector and their reference data shifting is identical 

in reference frame. Therefore, if Cb and Cr reference data 

can be combined in a interlaced mode as in Fig.3, valid 

reference data  of Cb component and Cr component can 

be read from off-chip memory together by doubling 

shifting samples in horizontal direction. By this way the 

data bus utilization can be improved greatly and data 

cycles can be saved as well.

Fig.3.Cb component and Cr component reference data combined 

in a interlaced mode 

3.4.strategy 4: luma component and chroma 

component reference data reading  though separately 

memory access  channels 

As H.264/AVC adopted tree structure motion 

compensation, luma component partition can be small to 

4x4 and chroma component partition can be small to 2x2. 

During motion compensation, random access for small 

blocks of data is more frequent than previous video 

coding standards, in this case caches do not necessarily 

help for saving data cycles. one effective solution is to 

adopt two memory channels, one is for luma component 

and the other is for chroma component, by this way the 

two channels can be accessed in parallel, as a result the 

clocks of reading reference data can be reduced. 

Moreover, the two memory channel can have different 

bandwidth, as chroma reference data is much less than its 

luma counterpart, the chroma component memory access 

channel adopts shorter bandwidth than luma component 

memory access channel, which can improve the data bus 

utilization. 

4. EXPERIMENT RESULTS

We performed four subsequent experiments based on 

JM73. Each targeted a particular memory access 

optimization strategy presented in section 3. The first 

experiment evaluated the effect of variable block size 

reference data reading, second experiment further 

evaluated the effect of direct interpolation mode reference 

data reading based on first experiment, third experiment 

targeted on the effect of Cb component and Cr component 

combined reference data reading based on the pervious 

two experiments, at last one 64 bit bandwidth memory 

access channel was replaced by two memory access 

channels, one is luma component memory channel with 

48 bit bandwidth, the other is chroma component memory 
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channel with  16 bit bandwidth to testify the effect of 

double memory channels based on the three previous 

experiments. All coders used only one I-picture at the 

beginning of a sequence, and two B-pictures were inserted 

between each two successive P-pictures, the QP of I-

picture and P-picture was set to 28, the QP of B-picture 

was set to 30, temporal direct mode was selected. Full 

search motion estimation with a range of U+U16 integer pixel 

was used by encoders along with the Lagrangian Coder 

Control [4]. 

Table 3 and Table 4 summarized the memory access 

optimization effect of strategy i (i=1, 2, 3, 4) over the 

combination of strategy 0…i-1, strategy 0 means that 

there is no optimization.  

Experiment results show that each strategy saved data 

cycles or improved data bus utilization upon previous 

ones. on the other hand, the optimization effect is 

somewhat depended on sequence characteristic. The 

optimization effect of still and low spatial detail sequences 

is more notable than sequences with complex motion and 

high spatial detail. On the average, about 60% data cycles 

can be reduced and more than 20% memory data bus 

utilization can be improved by combination of the four 

strategies. The first three strategies reduced quite a lot of 

data cycles and the last two strategies improved the data 

bus utilization evidently. 

5. CONCLUSION 

This paper proposed four motion compensation memory 

access optimization strategies for H.264/AVC decoder. 

Experiment results testified their effective. On the average, 

about 60% data cycles can be reduced and more than 20% 

memory data bus utilization can be improved by these 

strategies. In practice, the four strategies can be separately 

or jointly adopted to optimize the memory access 

performance of motion compensation in H.264/AVC 

decoder. We have adopted these strategies in the design of 

H.264/AVC HD decoder chip named as “LIFEVIEW-1”. 
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Table 3. Data cycles saved by each optimization strategy 

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Sequence

name

Data cycles 

per MB 

without

optimization 

Data

cycles per 

MB

Saved Data 

cycles per 

MB

Saved Data 

cycles per 

MB

Saved Data 

cycles per 

MB

Saved

Totally 

saved

Akiyo 657 574 14% 308 46% 243 26% 235 3% 64% 

Paris 621 532 14% 316 40% 256 19% 223 13% 64% 

News 636 542 14% 300 44% 238 21% 224 6% 64% 

Mobile 576 406 29% 340 16% 298 12% 261 12% 55% 

Tempete 578 455 21% 380 16% 330 13% 296 10% 49% 

Coastguard521 308 40% 233 24% 199 14% 171 14% 67% 

Table4. Memory data bus utilization improved by each optimization strategy 

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Sequence

name

Data bus 

utilization

without
optimization

Data bus 
utilization

Improved Data bus 
utilization

Improved Data bus 
utilization

Improved Data bus 
utilization

Improved

Totally 
Improved

Akiyo 48.53% 51.88% 3.35% 45.49% -6.39% 57.71% 10.22% 72.40% 14.69% 23.87% 

Paris 48.53% 52.42% 3.89% 46.97% -5.45% 57.96% 10.99% 72.36% 14.40% 23.83% 

News 48.52% 52.13% 3.61% 46.00% -6.13% 57.89% 11.89% 72.37% 14.48% 23.85% 

Mobile 48.53% 56.00% 7.47% 53.13% -2.87% 60.69% 7.56% 73.60% 12.91% 25.07% 

Tempete 48.52% 54.35% 5.83% 51.89% -2.46% 59.61% 7.72% 72.06% 12.45% 23.54% 

Coastguard 48.50% 55.97% 7.47% 53.64% -2.33% 62.46% 8.82% 75.31% 12.85% 26.81% 

V - 100

➡ ➠


