
MOTION COMPENSATION MEMORY ACCESS OPTIMIZATION STRATEGIES FOR

H.264/AVC DECODER

RongGang WangP

1,2
P, JinTao Li P

1
P, Chao HuangP

1
P

P

1
PDigital Technology Lab, Institute of Computing Technology, Chinese Academy of Sciences

P. O. Box 2704, Beijing, 100080, P. R. China
P

2
PGraduate School of the Chinese Academy of Sciences

Email: grwang@ict.ac.cn

ABSTRACT

H.264/AVC is the latest standard for video coding drafted

jointly by the ISO/IEC Moving Picture Experts Group and

the ITU-T Video Coding Experts Group. H.264/AVC

provides up to 50% gains in compression efficiency over

a wide range of bit rates and video resolutions compared

to previous standards. On the other hand, the decoder

complexity is about four times that of MPEG-2 and two

times that of MPEG-4 Visual Simple Profile. In VLSI

implement of H.264/AVC decoder, off-chip memory

access is the main time and power consuming operation,

and motion compensation module is the main memory

access bottleneck. This paper proposes four optimization

strategies to reduce memory access data cycles and

improve memory data bus utilization. Experiment results

show that about 60% data cycles can be reduced and more

than 20% memory data bus utilization can be improved by

these strategies over typical test sequences.

1. INTRODUCTION

H.264/AVC adopts a series of new techniques to improve

coding efficiency, such as flexible block size and quarter-

pixel motion compensation, spatial intra prediction, in

loop de-blocking filters and context-based adaptive binary

arithmetic coding etc. As a result, H.264/AVC gains up to

50% in compression efficiency over a wide range of bit

rates and video resolutions compared to previous

standards. On the other hand, the decoder complexity is

about four times that of MPEG-2 and two times that of

MPEG-4 Visual Simple Profile. In VLSI implement of

H.264/AVC decoder, off-chip memory access is the main

time and power consuming operation.

There are four main modules require off-chip memory

access in H.264/AVC decoder, which are reference

picture store, de-blocking, display feeder and motion

compensation. In addition, there some other off-chip

memory access requirements such as stream store and

motion vector store, as they are much less than the four

main modules, they are ignored from consideration. Table

1 lists the memory access ratio of each module in

H.264/AVC decoder in the worst case. We can see that

motion compensation module is the main memory access

bottleneck of H.264/AVC decoder. Therefore,

minimization of memory access operations is a key

consideration in H.264/AVC decoder VLSI design.

This paper utilizes the memory access behavior

characteristics of motion compensation and proposes four

optimization tragedies to reduce memory access data

cycles and improve memory data bus utilization.

Experiment results show that about 60% data cycles can

be reduced and more than 20% memory data bus

utilization can be improved by these strategies over

typical test sequences.

In section 2 the motion compensation memory access

behavior of H.264/AVC decoder is analyzed in detail.

Section 3 provides four optimization tragedies based on

the motion compensation memory access behavior

characteristics. Experiment results are presented in section

4 and in section 5 a conclusion is given.

Table 1. Memory access ratio of each H.264/AVC decoder

module (W: frame width, H: frame height)

Module name Max memory access bytes Ratio()

Reference

picture store

W*H + 2*(W/2)*(H/2) 10%

De-blocking (W/16)*(H/16-1)*16*4*2*2 5%

Display feeder W*H + 2*(W/2)*(H/2) 10%

Motion

compensation

(W/16)*(H/16)*16*(9*9+2*3*3)*2 75%

Total 16*W*H

2. H.264/AVC DECODER MOTION

COMPENSATION MEMORY ACCESS BEHAVIOR

ANALYSIS

H.264/AVC CODEC adopts block-based motion

compensation, the same principle used by previous major

coding standards since H.261. There are two main

differences from other standards, one is the support for

V - 970-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

variable block size and the other is fine sub-pixel motion

vectors [2].

2.1. Tree structured motion compensation

H.264/AVC supports variable motion compensation block

sizes ranging from 16x16 to 4x4 luminance samples with

many options between the two. The luma component of

each macroblock may be split up in 4 ways: 16x16, 16x8,

8x16 or 8x8. Each of the sub-divided regions is a

macroblock partition. If the 8x8 mode is chosen, each of

the four 8x8 macroblock partitions within the macroblock

may be split in a further 4 ways: 8x8, 8x4, 4x8 or 4x4.

These partitions and sub-partitions give rise to a large

number of possible combinations within each macroblock.

This method of partitioning macroblocks into motion

compensated sub-blocks of varying size is known as tree

structured motion compensation.

The resolution of each chroma component in a

macroblock (Cb and Cr) is half that of the luma

component. Each chroma block is partitioned in the same

way as the luma component, except that the partition sizes

have exactly half the horizontal and vertical resolution.

2.2. Sub-pixel motion vectors

Each partition in an inter-coded macroblock is predicted

from an area of the same size in a reference picture. The

motion vector between the two areas has sub-pixel

resolution. The luma and chroma samples at sub-pixel

positions do not exist in the reference picture and so it is

necessary to create them using interpolation from nearby

image samples.

The interpolated sub-pixel samples are generated as

follows. In the luma component of the reference picture,

first the half-pixel samples are generated (Fig. 1). Each

half-pixel sample that is adjacent to two full-pixel samples

is interpolated from full-pixel samples using a 6 tap Finite

Impulse Response (FIR) filter(1/32, -5/32, 20/32, 20/32, -

5/32, 1/32). Once all of the samples adjacent to full-pixel

samples have been calculated, the remaining half-pixel

positions are calculated by interpolating between 6

horizontal or vertical half-pixel samples from the first set

of operations. Once all the half-pixel samples are

available, the quarter-pixel positions are produced by

linear interpolation. In order to interpolate an M*N luma

partition (M is the width and N is the height of current

partition), an (M+5)*(N+5) reference data block is

required to be read from off-chip memory.

In 4:2:0 sampling format, quarter-pixel resolution motion

vectors in the luma component will require eighth-pixel

resolution vectors in the chroma components. Interpolated

samples are generated at eighth-pixel intervals between

full-pixel samples in each chroma component. In this case,

two dimensions linear interpolation is used to produce

every eighth-pixel chroma sample. In order to interpolate

an M*N chroma partition, an (M+1)*(N+1) reference data

block is required to be read from off-chip memory.

bb

a cE F I JG

h

d

n

H

m

A

C

B

D

R

T

S

U

M s NK L P Q

fe g

ji k

qp r

aa

b

cc dd ee ff

hh

gg

Fig.1. Full-pixel samples (shaded blocks with upper-case letters)

and sub-pixel sample positions (un-shaded blocks with lower-

case letters) for quarter-pixel sample luma interpolation.

3. MOTION COMPENSATION MEMORY ACCESS

OPTIMIZATION STRATEGIES

From the analysis in section 2, we can see that since

H.264/AVC support small block size motion

compensation and quarter-pixel motion vector (luma

component), more reference data is required to be read for

motion compensation compared to previous standards and

it is very significant to optimize motion compensation

memory access in H.264/AVC decoder. In this Section

four optimization tragedies of motion compensation

memory access are proposed. To facilitate the evaluation

of the optimization strategies we define several terms:

Valid reference data: the necessary reference data during

motion compensation.

Data bus bandwidth: bit width of memory access data

bus.

Data cycle: the clock cycle during which reference data

is read from off-chip memory.

Data bus utilization: the ratio between valid reference

data and reference data read in data cycles (the ratio may

not be 100%, as valid reference data may not be aligned

with memory data bus bandwidth).

Data cycles per MB: the average data cycles needed by

motion compensating an inter macroblock.

3.1.Strategy 1: variable block size reference data

reading

H.264/AVC adopted tree structure variable block size

motion compensation, JM73 unified the variable block

size into the smallest block size (luma in 4x4), then only

the smallest partition interpolation module is competent in

motion compensation. While the problem is that the

V - 98

➡ ➡

smallest partition motion compensation has to read more

redundant reference data compared to variable block size

motion compensation. Provided to predict a single

direction luma component 8x8 partition, in the worst case

valid reference data are 13*13=169 bytes, But when it is

unified into four 4x4 blocks, to predict each 4x4 partition

subsequently valid reference data is 9*9*4=324 bytes. As

in Fig. 2, the gray part is redundant reference data of the

up left 4x4 partition, the total redundancies (155 bytes)

are nearly equal to the whole valid reference data of

current 8x8 partition. It is expected that reading reference

data from off-chip memory according to variable block

size will save quite a lot of data cycles.

4x4

4x4 4x4

4x4

Fig.2. The up left 4x4 block redundant reference data induced by

divided 8x8 block into four 4x4 blocks (indicated by grey part).

3.2. Strategy 2: direct interpolation scheme reference

data read

During sub-pixel motion compensation, two interpolation

schemes can be selected [3]. One is subsequent

interpolation scheme, where every pixel on every sub-

pixel position is interpolated; the other is direct

interpolation scheme which only interpolates the sub-pixel

positions that are used in the motion compensated

prediction. In decoder, only one pixel in the sixteen

positions is needed for motion compensation prediction,

so direct interpolation scheme is adopted. Table 2

summaries the interpolation filters and the valid reference

data size for one M*N partition of each interpolation

position as in Fig.1 (M is the width and N is the height of

current partition). Data cycles can be further reduced by

this strategy.

Table 2. The interpolation filters and reference data size of one

M*N luma partition

Interpolation

position

Interpolation filters Valid reference

data size

One full-pixel

position: G

No interpolation

necessary

M*N

Positions a, b, c 6 tap horizontal

filter

(M+5)*N

Positions d, h, n 6 tap vertical

filter

M*(N+5)

Positions e, f, g, i,

j, k, p, q, r

6*6 tap filter (M+5)*(N+5)

3.3. Strategy 3: Cb component and Cr component

combined reference data reading

Cb and Cr component of one partition share the same

motion vector and their reference data shifting is identical

in reference frame. Therefore, if Cb and Cr reference data

can be combined in a interlaced mode as in Fig.3, valid

reference data of Cb component and Cr component can

be read from off-chip memory together by doubling

shifting samples in horizontal direction. By this way the

data bus utilization can be improved greatly and data

cycles can be saved as well.

Fig.3.Cb component and Cr component reference data combined

in a interlaced mode

3.4.strategy 4: luma component and chroma

component reference data reading though separately

memory access channels

As H.264/AVC adopted tree structure motion

compensation, luma component partition can be small to

4x4 and chroma component partition can be small to 2x2.

During motion compensation, random access for small

blocks of data is more frequent than previous video

coding standards, in this case caches do not necessarily

help for saving data cycles. one effective solution is to

adopt two memory channels, one is for luma component

and the other is for chroma component, by this way the

two channels can be accessed in parallel, as a result the

clocks of reading reference data can be reduced.

Moreover, the two memory channel can have different

bandwidth, as chroma reference data is much less than its

luma counterpart, the chroma component memory access

channel adopts shorter bandwidth than luma component

memory access channel, which can improve the data bus

utilization.

4. EXPERIMENT RESULTS

We performed four subsequent experiments based on

JM73. Each targeted a particular memory access

optimization strategy presented in section 3. The first

experiment evaluated the effect of variable block size

reference data reading, second experiment further

evaluated the effect of direct interpolation mode reference

data reading based on first experiment, third experiment

targeted on the effect of Cb component and Cr component

combined reference data reading based on the pervious

two experiments, at last one 64 bit bandwidth memory

access channel was replaced by two memory access

channels, one is luma component memory channel with

48 bit bandwidth, the other is chroma component memory

V - 99

➡ ➡

channel with 16 bit bandwidth to testify the effect of

double memory channels based on the three previous

experiments. All coders used only one I-picture at the

beginning of a sequence, and two B-pictures were inserted

between each two successive P-pictures, the QP of I-

picture and P-picture was set to 28, the QP of B-picture

was set to 30, temporal direct mode was selected. Full

search motion estimation with a range of U+U16 integer pixel

was used by encoders along with the Lagrangian Coder

Control [4].

Table 3 and Table 4 summarized the memory access

optimization effect of strategy i (i=1, 2, 3, 4) over the

combination of strategy 0…i-1, strategy 0 means that

there is no optimization.

Experiment results show that each strategy saved data

cycles or improved data bus utilization upon previous

ones. on the other hand, the optimization effect is

somewhat depended on sequence characteristic. The

optimization effect of still and low spatial detail sequences

is more notable than sequences with complex motion and

high spatial detail. On the average, about 60% data cycles

can be reduced and more than 20% memory data bus

utilization can be improved by combination of the four

strategies. The first three strategies reduced quite a lot of

data cycles and the last two strategies improved the data

bus utilization evidently.

5. CONCLUSION

This paper proposed four motion compensation memory

access optimization strategies for H.264/AVC decoder.

Experiment results testified their effective. On the average,

about 60% data cycles can be reduced and more than 20%

memory data bus utilization can be improved by these

strategies. In practice, the four strategies can be separately

or jointly adopted to optimize the memory access

performance of motion compensation in H.264/AVC

decoder. We have adopted these strategies in the design of

H.264/AVC HD decoder chip named as “LIFEVIEW-1”.

6. REFERENCES

[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T

VCEG, “Draft ITU-T recommendation and final draft

international standard of joint video specification (ITU-T Rec.

H.264/ISO/IEC 14 496-10 AVC,” JVTG050, 2003..

[2] Iain E. G. Richardson, “H.264 and MPEG-4 Video

Compression”, John Wiley & Sons, ISBN 0-470-84837-5

September 2003, 196-201(2003).

[3] T. Wedi, “Results on complexity and coding performance

investigations: Displacement vector resolution and interpolation

filter tap size”, VCEG-M46, Mar. 2001.

[4] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J.

Sullivan,“Rate-constrained coder control and comparison of

video coding standards,” IEEE Trans. Circuits Syst. Video

Technol., vol. 13, pp. 688–703, July 2003.

Table 3. Data cycles saved by each optimization strategy

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Sequence

name

Data cycles

per MB

without

optimization

Data

cycles per

MB

Saved Data

cycles per

MB

Saved Data

cycles per

MB

Saved Data

cycles per

MB

Saved

Totally

saved

Akiyo 657 574 14% 308 46% 243 26% 235 3% 64%

Paris 621 532 14% 316 40% 256 19% 223 13% 64%

News 636 542 14% 300 44% 238 21% 224 6% 64%

Mobile 576 406 29% 340 16% 298 12% 261 12% 55%

Tempete 578 455 21% 380 16% 330 13% 296 10% 49%

Coastguard521 308 40% 233 24% 199 14% 171 14% 67%

Table4. Memory data bus utilization improved by each optimization strategy

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Sequence

name

Data bus

utilization

without
optimization

Data bus
utilization

Improved Data bus
utilization

Improved Data bus
utilization

Improved Data bus
utilization

Improved

Totally
Improved

Akiyo 48.53% 51.88% 3.35% 45.49% -6.39% 57.71% 10.22% 72.40% 14.69% 23.87%

Paris 48.53% 52.42% 3.89% 46.97% -5.45% 57.96% 10.99% 72.36% 14.40% 23.83%

News 48.52% 52.13% 3.61% 46.00% -6.13% 57.89% 11.89% 72.37% 14.48% 23.85%

Mobile 48.53% 56.00% 7.47% 53.13% -2.87% 60.69% 7.56% 73.60% 12.91% 25.07%

Tempete 48.52% 54.35% 5.83% 51.89% -2.46% 59.61% 7.72% 72.06% 12.45% 23.54%

Coastguard 48.50% 55.97% 7.47% 53.64% -2.33% 62.46% 8.82% 75.31% 12.85% 26.81%

V - 100

➡ ➠

