
A GENERALIZED CACHED-FFT ALGORITHM

Bevan M. Baas

Department of Electrical and Computer Engineering

University of California, Davis

ABSTRACT

Fast Fourier Transform (FFT) algorithms are typically designed to
minimize the number of multiplications and additions while main-
taining a simple form. Few FFT algorithms are designed to take
advantage of hierarchical memory systems, which are easy to in-
clude in special-purpose processors, and nearly universal in mod-
ern programmable processors. We present a new generalized al-
gorithm, called the cached-FFT, which is designed explicitly to
operate on a processor with a hierarchical memory system. By
taking advantage of a small and fast cache memory, the algorithm
enables higher clock frequencies (for special-purpose processor
applications), reduced data communication energy, and increased
energy-efficiency—since smaller memories require lower energy
per access and can be positioned closer to the processor.

1. INTRODUCTION

A distinguishing characteristic of the cached-FFT is that it isolates
the high-speed and smaller-memory portion of the processor from
the large main memory. The algorithm allows repeated accesses of
data from a faster and smaller level of the memory hierarchy. This
characteristic offers several advantages over methods which do not
exploit the use of data caches, such as increased performance and
energy-efficiency. The algorithm also presents several disadvan-
tages, including the addition of new functional units (caches) if
they are unavailable, and added controller complexity.

First fully described in 1999 [1], the cached-FFT algorithm
has been used to develop at least three custom FFT processors:
a 1024-point FFT chip [2], a 512-point 2D FFT chip [3], and a
programmable 64–2048-point FFT chip [4]. The 1024-point chip
has an energy-efficiency 16 times greater and a clock rate 2.6 times
higher than other known FFT processors at the time of publication.

An algorithm which exploits a hierarchical memory system
must specify its memory access patterns, as the order of memory
accesses strongly effects performance. This paper presents the but-
terfly addresses and WN exponent control signals independent of
radix and in such a way that memory access patterns can be re-
arranged while maintaining correct operation and maximum reuse
of data in the cache. Because the simple and regular structures
of radix-r and “in-place” algorithms make their use attractive, the
cached-FFT we present is also radix-r and in-place.

This work was supported by an NSF Graduate Fellowship, NASA
GSRP Fellowship NGT-70340, Intel Corporation, NSF Grant CCF 430090,
and a UCD Faculty Research Grant.

Processor Cache Main Memory

Fig. 1. Cached-FFT processor block diagram

2. OVERVIEW OF THE CACHED-FFT

2.1. Basic Operation

The cached-FFT algorithm utilizes an architecture with a small
cache memory positioned between the processor and main mem-
ory, as shown in Fig. 1. The C-word cache has significantly lower
latency and higher throughput than the main memory since nor-
mally, C � N , where N is the length of the FFT, and the main
memory has at least N words.

The FFT caching algorithm operates with the following pro-
cedure:

1. N input data are loaded into main memory.

2. C of the N words are loaded into the cache.

3. As many butterflies as possible are computed using the data
in the cache.

4. Processed data in the cache are flushed to main memory.

5. Steps 2–4 are repeated until all N words have been pro-
cessed once.

6. Steps 2–5 are repeated until the FFT has been completed.

The FFT algorithm does not naturally map to a hierarchical
memory structure as can be seen in the dataflow diagram of a com-
mon 64-point radix-2 FFT in Fig. 2. The 64 memory locations are
indicated along the vertical axis and computation flows from left to
right. The diagram shows the global nature of the algorithm where
every output depends on every input.

2.2. Definitions

To aid in the introduction of the cached-FFT algorithm, we define
several new terms:

An epoch (E) is the portion of the cached-FFT algorithm
where all N data words are loaded into a cache, processed, and
written back to main memory once. Normally, E ≥ 2. Steps 2–5
in the list of Sec. 2.1 comprise an epoch.

A group is the portion of an epoch where a block of data is
read from main memory into a cache, processed, and written back
to main memory. Steps 2–4 in the list of Sec. 2.1 comprise a group.

V - 890-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

stage0 stage1 stage2 stage3 stage4 stage5

 0

 4

 8

12

16

20

24

28

32

36

40

44

48

52

56

60
63

Fig. 2. Dataflow diagram for a 64-point radix-2 FFT

A pass (P) is the portion of a group where each word in the
cache is read, processed with a butterfly, and written back to the
cache once.

A cached-FFT is balanced if there are an equal number of
passes in the groups from all epochs. Balanced cached-FFTs do
not exist for all FFT lengths. The transform length of a balanced
cached-FFT is constrained to values of rEP , where r is the radix
of the decomposition.

3. FFT ALGORITHMS SIMILAR TO THE CACHED-FFT

In 1966, Gentleman and Sande [5] proposed an FFT algorithm that
makes use of a “hierarchical store.” The method they propose se-
lects a transform length N that has two factors: N = AB. The
factor A is the “largest Fourier transform that can be done in the
faster store.” Their decomposition can also be viewed as a single
radix-A or single radix-B decimation of the input sequence. Pub-
lished in 1967, Singleton’s approach [6] is perhaps of limited use
for modern processors because of its intended application which
uses “serial-organized memory files, such as magnetic tapes or se-
rial disk files.” In 1969, Brenner [7] proposed two algorithms—
one is better suited for cases where the length of the transform is
not much longer than the size of the fast memory, and the sec-
ond for cases where the transform length is much longer. Rabiner
and Gold [8] discuss a method they call “FFT computation using
fast scratch memory.” Other similar algorithms have been pub-
lished by a number of other researchers [1, Ch. 4]. All of these
previously-published algorithms can be viewed as two-epoch cases
of the more general cached-FFT, providing less insight into how a
balanced epoch structure can be achieved or how the memory ac-
cesses, cache accesses, and processor design can be optimized.

4. THE CACHED-FFT ALGORITHM

To simplify its presentation, we initially consider only balanced
cached-FFTs. Furthermore, we consider only DIT decomposi-
tions, and note that the development of DIF algorithms follows
a similar procedure.

Operation of the cached-FFT requires several counters: epoch,
group, pass, and butterfly. Table 1 shows one arrangement of the
group and butterfly counters that allows a subset of the FFT to be
calculated in rlogr(C) = C memory locations. Other analogous

mappings are possible. The WN coefficients are generated using
bits within the group and butterfly counters as shown.

Although the radix-2 approach is easiest to visualize, the de-
scription given by the table applies to algorithms with other radices
as well. For use with radices other than two, the counter digits
(e.g., g1, ∗, b0,. . .) are interpreted as base-r digits instead of binary
digits (∈ [0, 1]) as in the radix-2 case. Higher-radix algorithms
generally require more than one WN coefficient, so although Ta-
ble 1 gives only one WN , it serves as a base factor where other
coefficients are normally multiples of the given value.

The asterisks represent digit positions where different values
in that position address the r inputs and r outputs of the butterflies.
For example, in the radix-2 case, a “0” in place of the asterisk
addresses one input and one output of the butterfly, and a “1” in
the asterisk’s position addresses the other input and output.

The tables do not specify a particular order in which to cal-
culate the FFT. The subscripts of the counter digits g and b show
only the relationship between address digits and WN -generating
digits. The digits can be incremented in any order or pattern—the
only requirements are that all N/r butterflies are calculated once
and only once and that epochs must be calculated in order.

In every cached-FFT, the following are true: (i) Across any
epoch, the positions and values of the group counter digits are
constant. (ii) Within each epoch, the memory address pattern is
identical for the logr(C) − 1 address digits not connected to the
group counter. These digits are the logr(C) − 2 butterfly digits
plus the one “∗” digit.

4.1. Implementing the Cached-FFT

As with any FFT, the length (N) and radix (r) must be speci-
fied. The cached-FFT also requires the selection of the number
of epochs (E). Although the computed values presented below
are derived from N, r, and E—and are therefore unnecessary—
we introduce new variables to clarify the implementation of the
algorithm.

For a balanced cached-FFT, the number of passes per group
is logr(N)/E and the cache size is C = E

√
N. For an unbal-

anced cached-FFT, the cache size is C = r

⌈
logr N

E

⌉
. For balanced

cached-FFTs, the number of groups per epoch is N/C and the
number of butterflies per pass is C/r. In some cases, the cache
size and the transform length are fixed, and the number of epochs

will then be E =
⌈

logr N

�logr C�

⌉
.

Without a cache, data are read from and written to main mem-
ory logr N times. With a cache, data are read and written to main
memory only E times. Therefore, the reduction is memory traffic
is logr(N)/E.

Software implementations of the cached-FFT algorithm on
programmable processors (with fixed cache sizes) can yield signif-
icant performance and energy improvements. Details of a cached-
FFT implementation on a Mitsubishi D30V DSP processor that re-
sulted in a 32% reduction in computation time, or a 1.47× speedup
have been reported [1].

Although the description of the cached-FFT given here is suf-
ficient to generate a wide variety of cached-FFT algorithms, ad-
ditional variations are possible. Many alternatives are developed
by varying the placement of data words in main memory and the
cache. Partitioning the main memory and/or cache into multiple
banks will increase memory bandwidth and alter the memory ad-
dress mappings.

V - 90

➡ ➡

E
po

ch
Pa

ss
B

ut
te

rfl
y

A
dd

re
ss

es
nu

m
be

r
nu

m
be

r
(
x

=
on

e
ba

se
-r

di
gi

t)
W

N
ex

po
ne

nt
s

0
0

g
lo

g
r
(N

/
C

)−
1

..
.

g
lo

g
r
(N

/
C

)−
lo

g
r
(C

)
··
·

g
lo

g
r
(C

)−
1

..
.

g
1

g
0

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗
0
0
0
··
·0

0
0

1
b l

o
g

r
(C

)−
2

..
.

b 1
∗

b 0
b 0

0
0
··
·0

0
0

. . .
. . .

. . .

lo
g

r
(N

)/
E

−
1

∗
..

.
b 2

b 1
b 0

b l
o
g

r
(C

)−
2
··
·b

1
b 0

0
··
·0

0

1
0

g
lo

g
r
(N

/
C

)−
1

..
.

g
lo

g
r
(N

/
C

)−
lo

g
r
(C

)
··
·

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗
g
lo

g
r
(C

)−
1

..
.

g
1

g
0

g
lo

g
r
(C

)−
1
··
·g

1
g
0
0
··
·0

0

1
b l

o
g

r
(C

)−
2

..
.

b 1
∗

b 0
b 0

g
lo

g
r
(C

)−
1
··
·g

1
g
0
0
··
·0

0

. . .
. . .

. . .

lo
g

r
(N

)/
E

−
1

∗
..

.
b 2

b 1
b 0

b l
o
g

r
(C

)−
2
··
·b

1
b 0

g
lo

g
r
(C

)−
1

..
.

..
.g

1
g
0
0
··
·0

0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

E
−

1
0

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗
··
·

g
2
·lo

g
r
(C

)−
1

..
.

g
lo

g
r

C
g
lo

g
r
(C

)−
1

..
.

g
1

g
0

g
lo

g
r
(N

/
C

)−
1
··
·g

1
g
0
0
··
·0

0

1
b l

o
g

r
(C

)−
2

..
.

b 1
∗

b 0
b 0

g
lo

g
r
(N

/
C

)−
1
··
·g

1
g
0
0
··
·0

0

. . .
. . .

. . .

lo
g

r
(N

)/
E

−
1

∗
..

.
b 2

b 1
b 0

b l
o
g

r
(C

)−
2

..
.

..
.b

1
b 0

g
lo

g
r
(N

/
C

)−
1
··
·g

1
g
0

Ta
bl

e
1.

M
em

or
y

ad
dr

es
se

s
fo

r
an

N
-p

oi
nt

,b
al

an
ce

d,
ra

di
x-

r,
D

IT
ca

ch
ed

-F
FT

.T
he

va
ri
ab

le
s
g k

an
d

b k
re

pr
es

en
tt

he
k

th
di

gi
ts

of
th

e
gr

ou
p

an
d

bu
tt
er

fly
co

un
te

rs
re

sp
ec

tiv
el

y.
A

st
er

is
ks

(∗
)
re

pr
es

en
t
di

gi
t
po

si
tio

ns
w

he
re

th
e

r
po

ss
ib

le
va

lu
es

ad
dr

es
s

th
e

r
bu

tte
rfl

y
in

pu
ts

an
d

r
ou

tp
ut

s.
N

ot
e

th
e

va
lu

es
of

di
gi

ts
in

th
e

gr
ou

p
co

un
te

r
ar

e
co

ns
ta

nt
w

ith
in

ep
oc

hs
.

V - 91

➡ ➡

Epoch Pass Butterfly address digits WN butterfly
number number (x = one base-r digit) coefficients

0 0 g2 g1 g0 b1 b0 ∗ W 00000
64

1 g2 g1 g0 b1 ∗ b0 W b00000
64

2 g2 g1 g0 ∗ b1 b0 W b1b0000
64

1 0 b1 b0 ∗ g2 g1 g0 W g2g1g000
64

1 b1 ∗ b0 g2 g1 g0 W b0g2g1g00
64

2 ∗ b1 b0 g2 g1 g0 W b1b0g2g1g0
64

Table 2. Addresses and WN coefficients for a 64-point, radix-2, DIT, 2-epoch cached-FFT

 0

 4

 8

12

16

20

24

28

32

36

40

44

48

52

56

60

63

epoch 0 epoch 1

pass 0pass 0 pass 1pass 1 pass 2pass 2

group 0

group 1

group 2

Fig. 3. Dataflow diagram for a 64-point, radix-2, 2-epoch cached-
FFT with an 8-word cache

4.2. Example: N = 64, E = 2, Radix-2 Cached-FFT

To illustrate how the cached-FFT works, we now consider a
cached-FFT implementation of a N = 64, radix-2, DIT FFT. We
choose two epochs (E = 2) for this cached-FFT example, which
implies a cache size of C = E

√
N = 2

√
64 = 8 words. Table 2

provides the address digit positions and WN coefficients for a 64-
point cached-FFT.

Two epochs of three passes each use three group counter digits
(g2, g1, g0) that are fixed across both epochs. The butterfly counter
and asterisk digit (b1, b0, ∗) positions are the same in both epochs.

Figure 3 shows the flow graph of the 64-point cached-FFT.
Radix-2 butterflies are drawn with heavier lines, and loads and
stores between main memory and the cache—which involve no
computation—are drawn with lighter-weight lines. A box encloses
an 8-word group to show butterflies calculated together from the
cache.

5. SUMMARY

The generalized cached-FFT algorithm is suitable for FFT trans-
forms of any length and radix, and is presented in a form that sim-
plifies simultaneous optimization of the cache size and the FFT al-
gorithm. Significantly increased levels of performance and energy-
efficiency are possible with both hardware and software implemen-
tations.

6. REFERENCES

[1] B. M. Baas, An Approach to Low-Power, High-Performance
Fast Fourier Transform Processor Design, Ph.D. thesis, Stan-
ford University, Stanford, CA, USA, Feb. 1999.

[2] B. M. Baas, “A low-power, high-performance, 1024-point
FFT processor,” IEEE Journal of Solid-State Circuits, vol.
34, no. 3, pp. 380–387, Mar. 1999.

[3] N. Miyamoto, L. Karnan, K. Maruo, K. Kotani, and T. Ohmi,
“A small-area high-performance 512-point 2-dimensional
FFT single-chip processor,” in European Solid-State Circuits
Conference, Sept. 2003, pp. 603–606.

[4] J.-C. Kuo, C.-H. Wen, and A.-Y. Wu, “Implementation
of a programmable 64–2048-point FFT/IFFT processor for
OFDM-based communication systems,” in IEEE Interna-
tional Symposium on Circuits and Systems, May 2003, vol. 2,
pp. 121–124.

[5] W. M. Gentleman and G. Sande, “Fast fourier transforms—
for fun and profit,” in AFIPS Conference Proceedings, Nov.
1966, vol. 29, pp. 563–578.

[6] R. C. Singleton, “A method for computing the fast fourier
transform with auxiliary memory and limited high-speed stor-
age,” in IEEE Transactions on Audio and Electroacoustics,
June 1967, vol. AU-15, pp. 91–98.

[7] N. M. Brenner, “Fast fourier transform of externally stored
data,” in IEEE Transactions on Audio and Electroacoustics,
June 1969, vol. AU-17, pp. 128–132.

[8] L. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1975.

V - 92

➡ ➠

