
OPTIMIZING DSP SCHEDULING VIA ADDRESS ASSIGNMENT WITH ARRAY AND
LOOP TRANSFORMATION

Chun Xue, Zili Shao, Ying Chen, Edwin H.-M. Sha

Department of Computer Science
University of Texas at Dallas

ABSTRACT

Reducing address arithmetic instructions by optimization of ad-
dress offset assignment greatly improves the performance of DSP
applications. However, minimizing address operations alone may
not directly reduce code size and schedule length for multiple func-
tional units DSPs. In this paper, we exploit address assignment and
scheduling for application with loops on multiple functional units
DSPs. Array transformation is used in our approach to leverage the
indirect addressing modes provided by most of the DSP architec-
tures. An algorithm, Address Instruction Reduction Loop Schedul-
ing (AIRLS), is proposed. The algorithm utilizes the techniques of
rotation scheduling, address assignment and array transformation
to minimize both address instructions and schedule length. Com-
pared to the list scheduling, AIRLS shows an average reduction
of 35.4% in schedule length and an average reduction of 38.3% in
address instructions. Compared to the rotation scheduling, AIRLS
shows an average reduction of 19.2% in schedule length and 39.5%
in the number of address instructions.

1. INTRODUCTION

DSP processors generally provide dedicated address generation
units (AGUs) that can perform address computations in parallel to
the central data path. As a result, when we access data in register-
indirect addressing mode, the address stored in the address register
(AR) can be auto-incremented or auto-decremented without extra
addressing instruction. If the address of the next variable could be
reached by auto-increment or auto-decrement, the next instruction
can be executed without additional address arithmetic instruction.
Consequently, contrary to the traditional compilers, DSP compil-
ers can carefully determine the relative location of data in mem-
ory and achieve compacted object code size and improved perfor-
mance. Loops are the most critical sections in many computation-
intensive DSP applications. An efficient loop scheduling can help
reduce both the schedule length and code size. In this paper, we
develop a scheme to exploit address assignment and scheduling for
application with loops on multiple functional units DSPs.

Recently, a lot of research has been done to optimize the ad-
dress assignment of variables to minimize the total number of ad-
dress arithmetic instructions. The address assignment was first
studied in [1, 2]. More research [3] has been done on address
assignment with fixed scheduling on single functional unit archi-
tectures. Some work [4] has been done on combining scheduling
and address assignment in code generation. These algorithms only
target single functional unit and can not be directly applied to mul-
tiple functional units.

This work is partially supported by TI University Program, NSF EIA-
0103709, Texas ARP 009741-0028-2001, and NSF CCR-0309461, USA.

This paper proposes an algorithm, Address Instruction Reduc-
tion Loop Scheduling (AIRLS), to minimize both address instruc-
tions and schedule length for loop applications with array transfor-
mation. In the AIRLS algorithm, the schedules are generated by
repeatedly rotating down and re-allocating nodes with minimum
address instructions based on rotation scheduling [5], and a best
schedule is selected that has the minimum schedule length. Dur-
ing each step of the rotation, we generate a transformed array se-
quence based on the result from the address assignment algorithm.
Then, this array sequence is used to determine the new location
for each rotating node. AIRLS shows significant performance im-
provement. Compared to the list scheduling, the average reduction
in schedule length is 35.4% and the average reduction in address
instructions is 38.3%. Compared to the rotation scheduling, the av-
erage reduction in schedule length is 13.6% and the average reduc-
tion in address instruction is 38.3%. When the unfolding technique
is applied with an unfolding factor of 2, the average reduction in
schedule length is increased to 24.8% and the average reduction in
address instructions is increased to 40.7%.

The remainder of this paper is organized as follows. Section
2 provides a motivating example. Section 3 introduces the basic
concepts and the architecture model. The algorithm is discussed
in Section 4. Experimental results and concluding remarks are
provided in Section 5 and 6, respectively.

2. MOTIVATING EXAMPLES

In this section, we provide a motivating example based on the loop
in Figure 1(a). The DFG for the loop is shown in Figure 1(b).
A schedule generated by list scheduling for the DFG is shown in
Figure 1(c) when there are three functional units. The retimed
graphs and schedules after the first and second rotation are shown
in Figure 2(a) and Figure 2(b) respectively, which are based on the
original schedule.

B[i]=A[i]+5;
C[i]=A[i]+21;
D[i]=A[i]*9;
E[i]=B[i]+C[i]+E[i];

A[i]=G[i 2]*7;

F[i]=E[i]+7;
G[i]=E[i]+F[i]+38;

for i=1 to n do

end for

Delay

*
+ 1

2

3

4

5

FU1 FU3FU2Step

 C D

A

B

E

F

G

A

B

E

F

DC

G

(a) (b) (c)

Fig. 1. A loop, its corresponding DFG and a static schedule.

We compare the schedule length based on the traditional rota-
tion scheduling, and the schedule length after apply array transfor-
mation and address assignment to the traditional rotation schedul-
ing. The detail schedule shown in Figure 3 is based on the node

V - 850-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

A

B

F

DC

G

E

FU1Step

3

E
B

FU2

A
 C D

FU3

1
2

G4
F

A

B

E

F

DC

G

(a)

FU1Step

2
3

FU2

A

FU3

C
1 E

G D

BF

(b)

Fig. 2. The retimed graph and the schedule after (a) the first rota-
tion. (b) the second rotation.

level schedule obtained by the traditional rotation scheduling from
Figure 2(b). In this detail schedule, each node is expanded into as-
sembly level codes. In our architecture model, we assume there is
only one address register available, and no other register is avail-
able to each accumulator. Under this constraint, and with the tra-
ditional array layout, it is very difficult to leverage the indirect
addressing modes. However, if we apply array transformation
technique, we can leverage indirect addressing modes provided by
most of the DSPs. For example, we transform the array data ac-
cording to figure 4(2). Figure 4(1) shows the traditional sequential
memory layout for arrays. Figure 4(3) denotes the array transfor-
mation in the 4(2), which is used as our notation in this paper for
array data transformation memory layout. With this array layout,
we obtain a new detail schedule as figure 4(4). We can see that the
schedule length has been reduced from 17 to 11, and number of
address instructions has been reduced from 14 to 5.

4 ADD *(AR1)

1 [E] LDAR AR1 &B[i]
2 LOAD *(AR1)
3 LDAR AR1 &C[i]

5 LDAR AR1 &E[i]
6 ADD *(AR1)
7 STOR *(AR1)
8 [F] ADD 7
9 LDAR AR1 &F[i]

11 [G] LDAR AR1 &E[i]
12 LOAD *(AR1)
13 LDAR AR1 &F[i]
14 ADD *(AR1)
15 ADD 38
16 LDAR AR1 &G[i]
17 STOR *(AR1)

10 STOR *(AR1)

6 [C] LDAR AR3 &A[i]

9 LDAR AR3 &C[i]

FU1
1 [A] LDAR AR2 &G[i 2]

3 MUL 7

FU2 FU3

2 LOAD *(AR2)

4 LDAR AR2 &A[i]
5 STOR *(AR2)

8 STOR *(AR2)

10 MUL 9
11 LDAR AR2 &D[i]
12 STOR *(AR2)

7 LOAD *(AR3)
8 ADD 21

10 STOR *(AR3)

6 [B] ADD 5
7 LDAR AR2 &B[i]

9 [D] LDAR AR2 &A[i]

Fig. 3. Detail Schedule after Rotation Scheduling

A[i]

B[i]

C[i]

E[i]

F[i]

D[i]

G[i 2]

AR1

AR3

AR2

5 [C] LDAR AR3 &A[i]
6 LOAD *(AR3)

8 LDAR AR3 &C[i]
9 STOR *(AR3)

FU1

2 LOAD *(AR1)
3 ADD *(AR1)
4 ADD *(AR1)

7 STOR *(AR1)+
8 [G] LOAD *(AR1)
9 ADD *(AR1)
10 LDAR AR1, G[i]

1 [A] LDAR AR2 &G[i 2]
2 LOAD *(AR2)
3 MUL 7
4 STOR *(AR2)

9 STOR AR2

5 STOR *(AR1)
6 [F] ADD 7

11 STOR *(AR1)

5 [B] ADD 5
6 STOR *(AR2)+
7 [D] MUL 9
8 LDAR AR2 &D[i]

7 ADD 21

FU2 FU3
1 [E] LDAR AR1 &B[i]

(3) (4)

(1)

Memory layout

....... G[0] A[2] B[2] C[2] E[2] F[2] D[2] G[1] A[3] B[3] C[3] E[3] F[3] D[3]

(2)

A[0] A[1] ... A[N] B[0] B[1] ... B[N] C[0] C[1] ... C[N] D[0] D[1] ... D[N]

Fig. 4. (1) Traditional sequential memory layout (2) Array Trans-
formation memory layout (3)Notation for array transformation in
this paper (4) Detail Schedule after Rotation Scheduling based on
array transformation memory layout

3. BASIC CONCEPTS AND MODELS

The processor model we use in this paper is given as follows.
For each functional unit in a multiple functional units processor,
there is an accumulator and an address register. Each operation
involves the accumulator and, if any, another operand from the
memory. Memory access can only occur indirectly via address
registers, AR0 through ARk. Furthermore, if an instruction uses
ARi for indirect addressing, then in the same instruction, ARi can
be optionally post-incremented or post-decremented by one with-
out extra cost. If an address register does not point to the desired
location, it may be changed by adding or subtracting a constant,
using the instructions ADAR and SBAR. In this paper, FNi is used
to denote functional unit i, and ARi is used to denote the address
register for FNi. We also use *(ARi), *(ARi)+, and *(ARi)- to
denote indirect addressing through ARi, indirect addressing with
post-increment, and indirect addressing with post-decrement, re-
spectively. This processor model reflects addressing capabilities
of most DSPs, and can be easily transformed into other architec-
tures.

Data Flow Graph is used to model loops and is defined as
follows. A Data Flow Graph (DFG)

� � � � � � � � � � � 	
is a

node-weighted and edge-weighted directed graph, where
�

is the
set of operation nodes,

�
 � � �
is the edge set that defines the

precedence relations for all nodes in
�

,
� � � �

is a binary string
associated with each node

 � �
,

� � � �
represents the number of

delays for an edge
�
. Nodes in

�
can be various operations, such

as addition, subtraction, multiplication, logic operation, etc.
In our case, a DFG can contain cycles. The intra-iteration

precedence relation is represented by the edge without delay and
the inter-iteration precedence relation is represented by the edge
with delays. The cycle period of a DFG corresponds to the min-
imum schedule length of one iteration of the loop when there are
no resource constraints.

An example is shown in Figure 1. The DFG in Figure 1(b)
models the loop in Figure 1(a). In this example, there are two
kinds of operations: multiplication and addition. They are denoted
by the rectangle and circle as shown in Figure 1(b).

A static schedule of a cyclic DFG is a repeated pattern of
an execution of the corresponding loop. In our work, a schedule
implies both control step assignment, and functional unit alloca-
tion. A static schedule must obey the precedence relations of the
directed acyclic graph (DAG) portion of the respective DFG. The
DAG is obtained by removing all edges with delays in the DFG.
Figure 1(c) shows a static schedule for the DFG in Figure 1(b)
when there are three FUs. The schedule is obtained by list schedul-
ing. We use � � � � �

to denote the location of a node in a schedule,
where � is the row (control step) and j is the column (FU). For ex-
ample, location � � � � �

in the schedule refers to node B scheduled at
control step 2 and assigned to � � � in Figure 1(c).

Unfolding is also called unrolling or unwinding, is widely
used in compiler design [6]. A schedule of unfolding factor f can
be obtained by unfolding G f times. That is, a total of f iterations
are scheduled together, and the schedule is repeated every f itera-
tions.

Retiming [7] can be used to optimize the cycle period of a
DFG by evenly distributing the delays in it. Given a DFG

� �
� � � � � � � � � 	

, retiming r of G is a function from V to integers. For
a node

 � �
, the value of � � �

is the number of delays drawn
from each of its incoming edges of node

and pushed to all of

its outgoing edges. Let
� � � � � � � � � � � � � 	

denote the retimed

V - 86

➡ ➡

graph of
�

with retiming � , then
� � � � � � � � � � � � � � � � � � � �

for
every edge

� � � � � � 	

in

� �
.

Rotation Scheduling presented in [5] is a scheduling tech-
nique used to optimize a loop schedule with resource constraints.
It transforms a schedule to a more compact one iteratively. In most
cases, the node level minimal schedule length can be obtained in
polynomial time by rotation scheduling. In each step of rotation,
nodes in the first row of the schedule are rotated down. By doing
so, the nodes in the first row are rescheduled to the earliest possible
available locations. From retiming point of view, each node gets
retimed once by drawing one delay from each of incoming edges
of the node and adding one delay to each of its outgoing edges in
the DFG. The new location of the node in the schedule must also
obey the precedence relation in the new retimed graph. The re-
timed graphs and schedules after the first and second rotation are
shown in Figure 2(a) and Figure 2(b) respectively, which is based
on the original schedule in Figure 1(c). The node level minimal
schedule length is obtained by the schedule in Figure 2(b).

4. THE AIRLS ALGORITHM

In this section, an algorithm, Address Instruction Reduction Loop
Scheduling (AIRLS), is designed to reduce address operations based
on loop unrolling and rotation scheduling. The basic idea is to first
unroll the loop, then generate the schedules by repeatedly rotating
down and re-allocating nodes with minimum schedule length and
address operations based on Rotation Scheduling, and then select
a best schedule that has the minimal schedule length. The AIRLS
algorithm is shown in Algorithm 4.1.

We use a function mSOA()[8] in the AIRLS algorithm, which
is a modified version of the original Solve-SOA algorithm [2] so
that it can handle partial access sequence, and also handle variables
from the same array. In the original Solve-SOA algorithm, an edge
is not selected if any node has a degree � 2 or if the edge causes
a cycle. In mSOA(), we add one more condition. An edge is not
selected if any node belongs to an array that is already selected f
times, where f is the loop unrolling factor. For example, if f = 2
and both A[i-1] and A[i] is already selected, we will not include
any edge that has A[i+1] or A[i+2].

In the AIRLS algorithm, we first put all nodes in the first row
of � into set � . Then we delete the first row of � and shift � up by
one control step. Variable � is used to record the schedule length
of � . After that, we retime each node

� 	 � such that � � � � �
� � � � � �

. After the retiming, the computation within each node is
updated as well. For example, after we retime node B, the com-
putation is change from B[i]=A[i]+5 into B[i+1]=A[i+1]+5. With
this updated computation, we will generate a new array transfor-
mation assignment based on the modified Solve-SOA algorithm,
mSOA(). Then, based on the precedence relation in the retimed
graph

� �
and the array transformation assignment from mSOA(),

we rotate each node
� 	 � by putting

�
into the location with the

minimum address operation among all available empty locations
in 	 , where 	 is the set containing all available locations of

�
.

We obtain the best location for a rotated node by the follow-
ing strategy. For a location � � � � 	 	 , we define a function,
 � � � � � � � � � � � � � � � � � � � �

, to compute the address operation
if

�
is assigned to location � � � �

. Assume that
� �

is the node in
the first non-empty location above � � � �

and
� � �

is the node in the
first non-empty location below � � � �

both in column
�

of � , then
 � � � � � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � � � � �
, where

 � � � � � �
represents the

Algorithm 4.1 Address-Instruction-Reduction-Loop-Scheduling
(AIRLS)

Require: DFG
� � �
 � � � � � � � �

, the unrolling factor f, the
retiming r of

�
, the computation c of

�
, the rotation times �

Ensure: A schedule � and the retiming r� �
Unroll

�
with factor f;

for all � =1 to � do� �
All nodes in the first row in � ;

Delete the first row from � ;
Shift S up by 1 control step;
for all

� 	 � do
� � � � � � � � � � �

;
Update computation(u);

end for
/*Generate a new address assignment based on updated com-
putation */
mSOA(G,V) ;
for all

� 	 � do	 �
All available locations of

�
from Row

�
to Row � in� based on the precedence relation in

� �
;

if
� � �

then	 �
All available locations of

�
in Row � � �

in � ;
end if

� � � � � �
The location with the minimum address operation

among all locations in 	 ;
Put

�
into � � � � �

;
end for
if � � � � � � � � � � � � � � � � � � ! � � � � � � � � � � � � then � ! � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

;� " � � ; � " � � ;
end if

end for
Output � " and � " ;

number of address operations between
�

and
�

. It is defined as fol-
lows:

 � � � � � � �
#$ % & the distance between x and y

�
0�

the distance between x and y
�

1
� Otherwise

When computing 	 , the available locations from row 1 to row �
are considered first. If there is no available locations in this field,
we assign the node to the locations in row � � �

. Using this strat-
egy, the schedule length is minimized in the first priority. After
all nodes in � are scheduled, the schedule � and the retiming �
are recorded.

 ' � � � will repeat the above procedure � times,
where � is a user specified amount. A best schedule is selected
from the � generated schedules, which has the minimum schedule
length and the minimum number of address instructions.

Let (be the number of functional units and � be the number
of nodes in

�
. The number of nodes in a row of a schedule is at

most (and the total number of empty locations is at most (�
� � � � �

. Considering the rotation times � , the complexity of the
AIRLS algorithm is

� � � � (� (� � � � � � � � � � � � () � � �
.

5. EXPERIMENTS
In this section, we conduct experiments with the AIRLS algorithm
on a set of benchmarks programs including 4-stage lattice filter,
8-stage lattice filter, differential equation solver, elliptic filter and
voltera filter. The experiments are performed on a simulator with

V - 87

➡ ➡

Bench. List Rotation AIRLS AIRLS (Unfolding factor=2)
SL AI SL AI SL %SL-L %SL-R AI %AI-L %AI-R SL/2 %SL-L %SL-R AI/2 %AI-L %AI-R

The number of FUs = 4
iir 24 24 12 24 12 50.0% 0.0% 13 45.8% 45.8% 11 54.2% 8.3% 13 45.8% 45.8%
Voltera 69 75 69 75 56 18.8% 18.8% 57 24.0% 24.0% 56 18.8% 18.8% 55 26.7% 26.7%
4-Latt. 53 74 41 74 34 35.8% 17.1% 47 34.7% 34.7% 33 37.7% 2.9% 49 31.9% 31.9%
8-Latt. 102 125 66 125 53 48.0% 19.7% 69 44.8% 44.8% 53 48.0% 19.7% 69 44.8% 44.8%
Diff2 22 28 22 28 17 2.27% 22.7% 16 42.9% 42.9% 16 27.3% 27.3% 16 42.9% 42.9%
Ellip 84 101 78 101 58 31.0% 25.6% 56 44.6% 44.6% 56 33.3% 28.2% 56 44.6% 44.6%
Allpole 71 43 36 43 36 49.3% 0.0% 21 51.2% 51.2% 20 71.8% 44.4% 25 41.9% 41.9%

The number of FUs = 6
iir 24 24 12 24 12 50.0% 0.0% 13 45.8% 45.8% 8 66.7% 33.3% 13 45.8% 45.8%
Voltera 69 75 69 75 56 18.8% 18.8% 55 26.7% 26.7% 56 18.8% 18.8% 55 26.7% 26.7%
4-Latt. 53 74 30 74 24 54.7% 20.0% 45 39.2% 39.2% 24 54.7% 20.0% 45 39.2% 39.2%
8-Latt. 102 125 42 125 42 58.8% 0.0% 72 42.4% 42.4% 35 65.7% 16.7% 65 48.0% 48.0%
Diff2 22 28 22 28 17 22.7% 22.7% 16 42.9% 42.9% 16 27.3% 27.3% 16 42.9% 42.9%
Ellip 84 101 78 101 55 34.5% 25.6% 56 44.6% 44.6% 54 35.7% 30.8% 56 44.6% 44.6%
Allpole 71 43 36 43 36 49.3% 0.0% 21 51.2% 51.2% 18 74.6% 50.0% 24 44.2% 44.2%

Average Reduction (%) 35.4% 13.6% – 38.3% 38.3% – 45.3% 24.8% – 40.7% 40.7%

Table 1. The comparison of schedule length and address operation for rotation scheduling and AIRLS

the similar architecture as TI C6000 DSP. We compare our results
with those from the traditional list scheduling and rotation algo-
rithm. The experiments are performed on a PC with a P4 2.1 G
processor and 512 MB memory running Red Hat Linux 9.0. In
the experiments, the running time of AIRLS on each benchmark is
less than one minute.

The experimental results for the list scheduling, the rotation
scheduling and the AIRLS algorithm, are shown in Table 1 when
the number of FUs is 4 and 6 respectively. Column “AI” presents
the number of address instructions and Column “SL” presents the
schedule length obtained from the three different scheduling algo-
rithms: the list scheduling (Field “List”), the traditional rotation
scheduling (Field “Rotation”), and our AIRLS algorithm (Field
“AIRLS”). Field “AIRLS(Unfolding factor=2)” denotes the data
obtained by AIRLS with each benchmarks unfolded by 2. Column
“%SL-L” and “%SL-R” under “AIRLS” represent the percentage
of reduction in schedule length compared with list scheduling and
rotation scheduling respectively. Column “SL/2” and “AI/2” de-
notes the average schedule length and address instructions consid-
ering two loop iterations are processed at the same time. Column
“%AI-L” and “%AI-R” under “AIRLS” represent the percentage
of reduction in number of address instructions compared with list
scheduling and rotation scheduling respectively.

Compared to the list scheduling, the reduction in schedule
length is 35.4% and the reduction in address instructions is 38.3%.
Compared to the rotation scheduling, the reduction in schedule
length is 13.6% and the reduction in address instructions is 38.3%.
When we apply unfolding technique with a unfolding factor of 2,
the average reduction in schedule length and number of address
instructions are both increased. Compared to the list scheduling,
the reduction in schedule length become 45.3% and the reduction
in address instructions become 40.7%. Compared to the rotation
scheduling, the reduction in schedule length become 24.8% and
the reduction in address instructions become 40.7%. In summary,
we found that AIRLS can reduce both schedule length and the
number of address instructions compared to the list scheduling and
the rotation scheduling.

6. CONCLUSION

Loops are the most critical sections for DSP applications. Mini-
mizing the schedule length and reducing code size for loops can

significantly increase performance for computation-intensive DSP
applications. In this paper, we proposed an algorithm, AIRLS,
that utilizes array transformation, address assignment, and rota-
tion scheduling techniques to reduce schedule length and address
operations for loops on multiple functional units DSPs. AIRLS
can significantly reduce schedule length and address instructions
comparing to the previous work.

7. REFERENCES

[1] David H. Bartley, Optimizing stack frame accesses for pro-
cessors with restricted addressing modes, John Wiley & Sons,
Inc., 1979.

[2] Stan Liao, Srinivas Devadas, Kurt Keutzer, Steve Tjiang, and
Albert Wang, “Storage assignment to decrease code size,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 18, pp. 235–253, May 1996.

[3] Rainer Leupers and Peter Marwedel, “Algorithm for address
assignment in dsp code generation,” in IEEE/ACM Interna-
tional conference on Computer-aided design, November 1996,
pp. 109–112.

[4] Yoonseo Choi and Taewhan Kim, “Address assignment com-
bined with scheduling in dsp code generation,” in ACM IEEE
Design Automation Conference, June 2002, pp. 225–230.

[5] L.-F. Chao, A. S. LaPaugh, and E. H.-M. Sha, “Rotation
scheduling: A loop pipelining algorithm,” IEEE Trans. on
Computer-Aided Design, vol. 16, no. 3, pp. 229–239, March
1997.

[6] A. Aiken and A. Nicolau, “Optimal loop parallelization,”
ACM Conference on Programming Language Design and Im-
plementation, pp. 308–317, 1988.

[7] C. E. Leiserson and J. B. Saxe, “Retiming synchronous cir-
cuitry,” Algorithmica, vol. 6, pp. 5–35, 1991.

[8] Chun Xue, Zili Shao, Edwin Sha, and Bin Xiao, “Optimiz-
ing address assignment for scheduling embedded dsps,” In-
ternational Conference Embedded and Ubiquitous Computing
(EUC), pp. 64–73, 2004.

V - 88

➡ ➠

