
Design and Automatic Code Generation of the LMS
Algorithm for SIMD Signal Processors.

J.P. Robelly, G. Cichon, H. Seidel and G. Fettweis
Vodafone Chair for Mobile Communications Systems

Technische Universitaet Dresden
01062 Dresden, Germany

Email: robelly@ifn.et.tu-dresden.de

Abstract— Taking as a starting point a collection of algebraic
primitives that captures the SIMD computational model, we
show in this paper our methodology for designing, mapping
and implementing algorithms for SIMD-vector signal processors
with scalable level of parallelism. Taking as an example the
LMS, we show how an algorithm, which has been designed to
exhibit a suitable level of data parallelism can be described by
these algebraic primitives. In turn, these algebraic primitives are
programmed in a matrix oriented language. A suitable compiler
generates object code for SIMD processors with a scalable
number of processing elements.

I. INTRODUCTION

The advancement on VLSI technology has prompted re-
newed attention onto SIMD-vector signal processors, since it
enables the application of the SIMD computational model for
low-power, high-performance programmable devices. Thus,
many ideas developed for supercomputers have reached the
field of embedded signal processing upon the promise of
delivering to programmable devices the required processing
power at reasonable levels of power consumption and die size.

In [1] and [2], we have presented a novel compiler friendly
microarchitecture called Synchronous Transfer Architecture
STA, which offers scalable parallelism at the instruction and
at the data level. In this paper we only address the problem
of exploiting SIMD data level parallelism for our family of
STA processor cores. Readers interested on instruction level
parallelism are referred to [3].

The classical vectorization of algorithms for SIMD archi-
tectures is based on automatic loop vectorization. Hereby,
algorithms are represented as sequential programs consisting
of loops. Then, data dependence is established by searching
on the space spanned by the loop indexes. Direct application
of loop vectorization to algorithms, which are serial in nature
might lead to modest speedup factors. This is especially true
for the LMS, where data is processed in serial fashion due to
direct data dependence in the computation of the coefficients
update.

In this paper we present a methodology for the implemen-
tation of signal processing algorithms into our family of STA
processor cores. Our methodology is based on three steps:

1) Algorithm Design
2) Algorithm Mapping
3) Algorithm Implementation and Code Generation

Taking as an example the LMS algorithm, we introduce a
series of mathematical and software tools that enable this
methodology.

II. SIMD COMPUTATIONAL MODEL

In figure 1 we observe a block diagram that illustrates a
high level model of a SIMD processor. The purpose of this
model is to abstract many details of the architecture and it is
not intended to be a detailed description of our STA processor
cores.

The model mainly consists of a vector unit, a scalar unit and
an interconnection network. The model can deal with three
different types of data: address data type Z, scalar data type
R and vector data type V. The vector data type consists of
ν elements of R. The scalar unit operates onto data of type
address and data of type scalar. The vector unit deals with data
of type vector exclusively. Both the scalar and the vector unit
have their own register files and memory elements.

The scalar unit is intended to execute address computations
and scalar computations of the algorithm. This unit is fur-
nished with the usual operations like addition, multiplication,
right and left shift, bitwise and, bitwise or, bitwise not, bitwise
xor, modulo, etc. The vector unit contains enough processing
elements to manipulate vectors of ν elements. This unit is
furnished with the same operations of the scalar unit but it
operates on vectors. Thus, this unit executes componentwise
addition, multiplication, right and left shift, and, or, xor, etc.
The interconnection network supports different vector data
transfers and the transfer of data between the scalar and the
vector unit. Among the vector data transfers we can mention
vector right and left shift and stride permutations. Scalar data
can be transferred to the vector unit either via broadcast
transfer, or by forming a base vector on V weighted with
a scalar value. Finally, an element of a vector residing on
the interconnection network can be selected in order to be
manipulated by the scalar unit.

A. Algebraic Primitives

Davio [4] in his classical paper established the connection
between the Kronecker product of matrices and stride per-
mutations. In his paper he proved the important commutation
theorem of Kronecker products

A ⊗ B = P (mAmB ,mA) (B ⊗ A)P (nAnB , nB) ,

V - 810-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

PE

ME

PE

ME

PE

ME

Interconnection Network

Vector Unit

Vector Reg.
File

Scalar Reg.
 File

PE

ME

Scalar
 Unit

Vector Memory

Fig. 1. SIMD organization

where P (L, s) is a matrix that represents the permutation of
L elements with stride s and A⊗B is a matrix known as the
Kronecker product of the mA×nA matrix A and the mB×nB

matrix B that is defined as follows:

A ⊗ B =

⎡
⎢⎢⎢⎣

a0,0B . . . a0,nA−1B
a1,0B . . . a1,nA−1B

... . . .
...

amA−1,0B . . . amA−1,nA−1B

⎤
⎥⎥⎥⎦ .

Later, Tolimieri [5] makes the observation that different mod-
els of parallel computation can be described by means of
Kronecker products. More recently, in [6] these ideas were
extended to automate the generation of Fast Fourier Trans-
forms for SIMD processors.

In order to characterize the SIMD computational model let
A be an m×n matrix, x a νn×1 vector, y a νm×1 vector, Iν

the ν×ν identity matrix and consider the following important
expression:

y = (A ⊗ Iν)x. (1)

Equation (1) is known as a Kronecker vector factor, since for
its computation only vectors in V are manipulated. This is
better illustrated if we partition the input and output vectors
and using Matlab syntax we define xq = x

(
qν : (qν+ν−1)

) ∈
V for q = 0, 1, . . . , n − 1 and y

i
= y

(
iν : (iν + ν − 1)

) ∈ V

for i = 0, 1, 2, . . . , m−1. Then, we can write for equation (1)
the following:

y
i
=

n−1∑
q=0

(ai,q ⊗ Iν)xq. (2)

Equations (1) and (2) capture the SIMD computation model.
Further we assume for the level of SIMD parallelism

ν = 2γ for γ = 1, 2, 3, . . .

Recalling our model of figure 1, we observe that equa-
tion (2) can be efficiently implemented if the coefficients
ai,q ∈ R are stored in scalar memory, then these coefficients
are broadcasted. The resulting vector is componentwise mul-
tiplied by the vector xq and accumulated. After n iterations
we obtain y

i
.

In order to support a larger family of algorithms, we
have introduced other data transfer operators. For instance,
(Zν)i describes a downwards vector shift by i positions and(
ZT

ν

)i
describes an upwards vector shift by i positions. Other

SCALAR UNIT
scalar addition c = a + b

scalar subtraction c = a − b
scalar multiplication c = a ∗ b

bitwise shift c = bitshift(a,b)
VECTOR UNIT
vector addition v1 = v2 + v3

vector substraction v1 = v2 − v3
vector componentwise multiplication v1 = v2. ∗ v3

INTERCONNECTION
broadcast v = a ⊗ Iν

vector shift upwards v1 = (Zν)i v2

vector shift downwards v1 =
(
ZT

ν

)i
v2

vector construction from scalar v = a.ei
ν

scalar selection from vector a =
(
ei
ν

)T
.v

Stride Permutation v1 = P (ν, s)v2

TABLE I

ALGEBRAIC PRIMITIVES

important operations are the selection of a scalar from a vector
and the construction of a vector from scalars. In our framework
this is supported by ei

ν , which represents a base vector on V.
The most used algebraic primitives are summarized in table I.

III. PARALLEL LMS ALGORITHM DESIGN

In this section we present a parallel formulation of the LMS
algorithm as derived in [7]. The starting point is the serial
representation, which is given by:

e(k) = d(k) − uT (k)w(k), (3)

w(k + 1) = w(k) + µe(k)u(k), (4)

where µ is the adaption factor, d(k) is the desired filter
output, e(k) is the error signal, the p × 1 vector of fil-
ter coefficients wT (k) = [w1(k), w2(k), . . . , wp(k)] and the
delay chain of the filter formed by the input samples is
uT (k) = [u(k), u(k − 1), . . . , u(k − p + 1)]. In the following
we consider p/ν = M and M = 1, 2, The LMS algorithm
expressed as in equations (3)(4) processes the input data
in serial fashion and therefore, it is not suitable for the
implementation into SIMD-vector processors. Our purpose is
to derive a formulation of the algorithm that process the input
data as vectors of ν elements. Such a vector processing for-
mulation of recursive algorithms can be derived via lookahead
technique [8]. In fact, applying ν times lookahead to equa-
tions (3)(4) and after some algebraic manipulations we can
derive the following equations for the LMS computation [7]:

e(k) = G(k)
[
d(k) − U(k)w(k − ν + 1)

]
, (5)

w(k + 1) = w(k − ν + 1) + µUT (k)e(k), (6)

where eT (k) = [e(k − v + 1), . . . , e(k − 1), e(k)] ∈ V is the
error vector, dT (k) = [d(k − v + 1), . . . , d(k − 1), d(k)] ∈ V

is the desired vector at the output of the block filter. UT (k) =
[u(k−ν+1), . . . , u(k−1), u(k)] is the p×ν matrix formed by
ν delay chains. The computation of the block filter is given
by U(k)w(k − ν + 1). G(k) is the ν × ν error correcting
matrix and can be regarded as the overhead introduced by

V - 82

➡ ➡

the lookahead transformation. The overhead matrix can be
computed as G(k) =

(
Iν + S(k)

)−1
, where

S(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
s1(k − ν + 2) 0 . . . 0

s2(k − ν + 3) s1(k − ν + 3)
...

...
...

...
...

...
...

sν−1(k) sν−2(k) . . . s1(k) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)
The entries of this matrix are si(k) = µuT (k)u(k − i). Thus,
equations (5)(6) describe a block formulation of the LMS
algorithm that process input data in a vector fashion.

A. Interim Discussion

The overhead matrix G(k) is a lower triangular matrix with
ones on its main diagonal. This matrix has to be computed
every time a new input vector is processed. The matrix
entries of the lower subdiagonals of this matrix are computed
using the entries si(k) of S(k). Hence, the number of scalar
operations increases with the level of parallelism ν. Moreover,
the number of scalar operations for computing the entries
si(k) increases with the number of filter coefficients p. Thus,
for large values of ν and p the algorithm spends a lot of
time computing scalar operations in order to calculate the
overhead matrix. However, the number of scalar operations
can be dramatically decreased by means of two approaches.

On the one hand, it is important to note that the elements
of the first column of S(k) in terms of the elements of the
last row that were computed during the previous block can be
recursively computed as follows:

si(k − ν + i + 1)

=si(k − ν) + µ

[
i∑

j=0

u(k − ν + i − j + 1)

· u(k − ν − j + 1)

−
i∑

j=0

u(k − p − ν + i − j + 1)

· u(k − p − ν − j + 1)

]
,

(8)

for i = 1, . . . , ν − 1. For the entries of the subdiagonals we
can write:

si(k + 1) =si(k) + µ
[
u(k + 1)u(k − i + 1)

− u(k − p + 1)u(k − i − p + 1)
] (9)

Thus, the number of scalar operations for computing the
entries of S(k) becomes independent of the number of filter
coefficients p.

On the other hand, the number of scalar operations can
be alleviated if the error correcting matrix is relaxed. This
influences the performance of the algorithm according to the
autocorrelation characteristics of the input signal. In figure 2,

Fig. 2. Error curves for an adaptive filter with 128 coefficients and adaption
factor µ = 0.01 for the LMS, BLMS4 and BLMS16.

we can compare the error curves for different approximations
of the overhead matrix with the error curve of the original
algorithm. For the formulation of the algorithm with ν = 4
we have used only three diagonals of the overhead matrix
instead of four. For the case ν = 16, we considered only
four diagonals. For the error curves shown we have passed
linearly independent symbols through an ISI channel. As we
can observe from the figure, the number of scalar operations
can be dramatically reduced at expenses of marginal changes
on the performance of the algorithm.

IV. MAPPING THE PARALLEL LMS INTO ALGEBRAIC

PRIMITIVES

In this section we express the parallel computation of the
LMS algorithm in terms of the algebraic primitives presented
in section II. The algorithm as presented in equations (5)(6)
has three stages: block filtering and error computation, com-
putation of the overhead matrix and error correction, and
coefficients update.

In the following we assume that the length of the training
sequence satisfies L/ν = J and J = 1, 2, 3, Thus, the
input samples to be processed by the algorithm are collected
in a vector u = [u(k), u(k+1), . . . , u(k+L−1)]T . Likewise,
we can define the vector of filter output samples y and the
vector collecting the training sequence d. In order to process
the input data in vector fashion, we partition u and construct
uj = [u(k + νj), u(k + νj + 1), . . . , u(k + νj + ν − 1)]T ∈ V

for 0 ≤ j < J , otherwise this is a vector with ν zero elements.
Likewise, we can partition y and d and we form y

j
and dj .

The block filter can be formulated by means of the algebraic
primitives as follows:

y
j

=
p−1∑
q=0

(wq ⊗ Iν) ·
[
(Zν)(q) mod νuj−� q

ν �+

(ZT
ν)(ν−q) mod νuj−1−� q

ν �
]
,

(10)

where mod is the modulo operator and �·� is the floor operator.
The error vector can be computed as e = y

j
− dj ∈ V.

For calculating the error correction matrix we use equa-
tions (8)(9) for computing the scalar values of the matrix

V - 83

➡ ➡

0

5000

10000

15000

20000

25000

30000

35000

104 200 304 400 504 600

serial LMS

BLMS8

BLMS4

Number of Filter Coefficients

C
yc

le
s

pe
r

S
am

pl
e

Fig. 3. Number of cycles per sample for the LMS algorithm computed
serially, computed in a SIMD processor with ν = 4 and computed in a
SIMD processor with ν = 8.

entries. We can use these scalar values to form the vectors that
build the ν × ν′ relaxed correction matrix G′, where ν′ is the
number of diagonals taken from the original matrix. Moreover,
the chosen diagonals of G(k) are stored in G′ as columns
completed with zeros if necessary. Thus, for the computation
of the error correction and using Matlab syntax we can write:

e′ =
ν′−1∑
q=0

G′(:, q). ∗ e, (11)

for e′ ∈ V. This completes the computation of a relaxed
version of equation (5). For the computation of equation (6)
we need the following result:

e′′ =
[
(Zν)(q) mod νuj−� q

ν �+

(ZT
ν)(ν−q) mod νuj−1−� q

ν �
]
· e′,

(12)

for 0 ≤ q < p − 1. Adding the ν elements of the resulting
vector we obtain:

x(q) =
ν−1∑
i=0

(
ei
ν

)T
e′′. (13)

It is important to note that x is a vector of p elements. How-
ever, loading ν elements of this vector x

(
mν : (m+1)(ν−1)

)
,

for 0 ≤ m < M results in vectors in V and we can write for
the coefficients update the following equation

w
(
mν : (m + 1)(ν − 1)

)
=w

(
mν : (m + 1)(ν − 1)

)
+ (µ ⊗ Iν)
x
(
mν : (m + 1)(ν − 1)

) (14)

This completes the computation of the algorithm using the
algebraic primitives that describes the SIMD computational
model of section II.

V. CODE GENERATION AND RESULTS

Algorithms expressed as in equations (10)-(14) can be easily
programmed using a matrix oriented language like Matlab or
Octave. In [2][3] we presented a compiler infrastructure, which
process programs written in Matlab or Octave. One stage of
the compiler features pattern matching and uses the algebraic
primitives in order to establish the rules for the generation of a
medium intermediate representation that contains information

about data level parallelism. Further stages of this compiler ex-
ploits instruction level parallelism and deals with architecture
dependent issues like for example register allocation.

The LMS algorithm was programmed in Octave once and
code was generated for STA cores with different levels of
parallelism ν. The code was run in cycle accurate processor
models at the register transfer level. If figure 3 we can observe
the number of cycles per sample for the case ν = 4, ν′ = 3
(BLMS4) and ν = 8, ν′ = 4 (BLMS8). For comparison
purposes a serial implementation of the algorithm, which was
entirely computed on the scalar unit of the processor is pre-
sented. The code for this implementation was also generated
using our compiler, yet the Octave code was written using the
original serial mathematical formulation of the algorithm. As
we can observe, important speed up factors are achieved.

VI. CONCLUSION AND FUTURE WORK

Many state of the art code optimization techniques are yet
to be implemented in our compiler infrastructure. We expect
that these techniques will improve the code quality and we
will reduce the number of cycles per sample in at least one
order of magnitude. In future publications we will report about
these efforts.

The model presented in section A provides an abstraction
system that describes the functionality of a SIMD-vector
processor. In order to find a mapping between an algorithm
and the architecture, we have introduced primitive algebraic
constructions, which enables a mathematical formulation tak-
ing into account architectural features of the processor. The
algebraic constructions are primitive in the sense that they are
general enough to enable the formulation of a large family
of algorithms. Moreover, the algebraic primitives determine
transformation rules for the synthesis of code that exploit the
features they describe. In this paper we have presented this
approach taking as example the LMS algorithm.

REFERENCES

[1] G. Cichon, P. Robelly, H. Seidel, M. Bronzel, and G. Fettweis, “Syn-
chronous transfer architecture (STA),” in Lecture Notes on Computer
Science, S. Vassiliadis, Ed. Berlin, Germany: Springer-Verlag, July 2004,
to be published.

[2] P. Robelly, G. Cichon, H. Seidel, M. Bronzel, and G. Fettweis, “A
hw/sw design methodology for embedded simd vector signal processors,”
International Journal of Embedded Systems IJES, January 2005, to be
published.

[3] G. Cichon, P. Robelly, H. Seidel, M. Bronzel, and G. Fettweis, “Compiler
scheduling for STA processors,” In Proc. International Conference on
Parallel Computing in Electrical Engineering PARELEC 2004. Dresden,
Germany, pp. 45–50, Sept. 2004.

[4] M. Davio, “Kronecker products and shuffle algebra,” IEEE Trans. on
Computers, vol. C-30, no. 2, pp. 116–125, Feb. 1981.

[5] R. Tolimieri, M. An, and C. Lu, Algorithms for discrete Fourier transform
and convolution. New York: Springer Verlag, 1997.

[6] F. Franchetti and M. Pueschel, “A simd vectorizing compiler for digital
signal processing algorithms,” In Proc. International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 20–26, 2002.

[7] J. Benesty and P. Duhamel, “A fast exact least means square adaptive
algorithm,” IEEE trans. on SP., vol. 40, no. 12, pp. 2904–2990, Dec.
1992.

[8] G. Fettweis and L. Thiele, “Algebraic recurrence transformations for
massive parallelism,” in Proceedings of the IEEE Workshop on VLSI
Signal Processing, Napa, California, October 1992, pp. 332–341.

V - 84

➡ ➠

