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Abstract: A 3-D Heterogeneous Sensor using a stacked chip has 

recently been proposed. While the sensors are located on one of the 

planes, the other planes provide for analog processing, digital signal 

processing, and wireless communication. This paper1 focuses on its 

DSP plane, in particular on the implementation of the ICA 

(Independent Component Analysis) algorithm in the DSP plane. 

ICA is a recently proposed method for solving the blind source 

separation problem. The objective is to recover the unobserved 

source signals from the observed mixtures without the knowledge of 

the mixing coefficients. We present a parallel architecture for it 

utilizing the reconfigurable J-platform, which employs coarse-gain

VLSI cells with high functionality, performance, and 

reconfigurability. These include a Universal Nonlinear (UNL) cell, 

an extended multiply accumulate (MA_PLUS) cell, and a Data-

Fabric (DF) cell.  The coarse-grain approach has the distinct 

advantages of reduced external interconnect, much reduced design 

time, and manageable testability. Additionally, the other algorithms 

needed for the 3-D HSoC can also be mapped on to the same 

resources, by time multiplexing, thereby reducing the silicon area 

needed. 

I.  INTRODUCTION 

A 3D Heterogeneous Sensor using a stacked chip has recently been 

proposed [1],[2]. While the sensors are located on the top plane, the 

other planes provide for analog processing, digital signal processing, 

and wireless communication. On the sensor plane four types of 

sensors are placed, namely visible imager (Active Pixel Sensor), 

infrared imager, seismic, and acoustic.  The creation of integrated 

systems containing both sensors and processing power is of 

considerable interest in areas ranging from remote monitoring to 

security and defense. Ideally one would like an ultra-small, ultra-

compact, unattended multi-phenomenological sensor system 

providing an integrated classification-and-decision-information 

extraction capability from the sensed environment. As illustrated in 

Fig. 1, the concept is to fabricate separate wafers for each plane 

(sensors, analog, digital processing, etc), mechanically polish the 
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Fig. 1   3-D heterogeneous system on a chip 
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wafers to a thin structure, add inter-plane vias, separate into chip 

blocks and create a stacked 3-D structure. The target is to achieve a 

minimum 10X reduction in weight, volume, and power and a 10X or 

greater increase in capability and reliability – over alternative planar 

approaches. These gains will accrue from (a) the avoidance of long 

on-chip interconnects and chip-to-chip bonding wires, and (b) the 

cohabitation of sensors, preprocessing analog circuitry, digital logic 

and signal processing, and RF devices in the same compact volume. 

This concept is shown in Fig. 2 in greater detail, wherein a set of  

four types of sensors, namely an array of acoustic and seismic 

sensors, an active pixel sensor array, and an uncooled IR imaging 

array are placed on a common sensor plane. It is useful to remark 

that the sensor set incorporates redundancy for defect tolerance, and 

the DSP algorithm takes into account the corresponding changes in 

the locations of the sensors. More details can be found in [4]. 
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Fig. 2  Sensor plane for 3-D heterogeneous system 

Among the planes mentioned above, the DSP plane provides for 

sensor data fusion, feature extraction and event 

detection/classification capability. Toward these goals, this paper 

focuses on the realization of the ICA (Independent Component 

Analysis) algorithm [3]-[4] on the DSP plane. ICA can be used for 

solving the blind source separation problem as well as for sensor 

data fusion. In the first case the objective is to recover the 

unobserved source signals from the observed mixtures without the 

knowledge of the mixing coefficients and in the second the 

extraction of the feature signals. It has the potential for a wide range 

of applications in industrial, medical, and security areas because it 

reduces the complex problem of dealing with high-dimensional 
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statistical descriptions to products of one-dimensional density 

functions. In this paper we present a parallel architecture utilizing 

the reconfigurable J-platform [7], which employs coarse-gain VLSI 

cells with high functionality, performance, and reconfigurability. 

These include a Universal Nonlinear (UNL) cell, an extended 

multiply accumulate (MA_PLUS) cell, and a Data-Fabric (DF) cell 

[5]-[8].  The coarse-grain approach has the distinct advantages of 

reduced external interconnect, much reduced design time, and 

manageable testability. Additionally, the other algorithms needed for 

the 3D HSoC can also be mapped onto the same resources, by time 

multiplexing. 

The paper is organized as follows. Section II discusses the 

motivation for employing the ICA algorithm. Section III very briefly 

describes the J-platform. Section IV focuses on the parallel 

architecture for the computations in the fast ICA algorithm, 

followed by estimates of performance in Section V. Time-

multiplexing of resources is discussed in Section VI, and defect 

tolerance in Section VII.

II.  The ICA and the Fast ICA 

Imagine that in a room two people are speaking simultaneously and 

that there are two microphones which produce time signals denoted 

by x1(t) and x2(t). Each of these received signals is a weighted sum 

of the speech signals produced by the two speakers denoted by s1(t) 

and s2(t). Then we can express the received signals in terms of the 

original signals in terms of some weighting coefficients a11, a12, a21,

and a22 that depend on the microphone characteristics and their 

distances from the speakers. Clearly, it would be very useful to 

recover the original speech signals from the received signals. More 

generally, if there are m source signals and m received mixed 

signals, then their relationship can be expressed as 
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or in matrix-vector notation x(t) = A s(t). Here, for example, s1 and 

s2 could be speech signals, s3 could be the sound produced by a 

motor vehicle, etc. In a biomedical environment they could represent 

a set of EEG signals, ECG signals, blood pressure signals, etc. 

The recently developed technique called ICA, can be used to 

estimate A or its inverse W = A-1 based on the information of their 

statistical independence, which then allows blind separation of the 

original signals from their mixtures. The technique is applicable not 

only to time signals but also to images. As an example consider the 

three images s1, s2 and s3 shown in the Fig. 3 (a), (b) and (c). Their 

histograms are shown in (d), (e) and (f). Suppose now that the 

observed images are the weighted mixtures shown in Fig. (g), (h) 

and (i). We now pose the question whether and how we can recover 

the original images blindly (without the knowledge of the mixing 

information). The answer is a ‘yes’ based upon certain mild 

assumptions which can be found in [1],[2]. Indeed, the images 

estimated by the application of the fast version of ICA, called Fast 

ICA [1], [2] are shown in Fig. 3 (j) (k) and (l). They are seen to be 

excellent replicas of the original images. 

This algorithm has a wide range of potential applications in 

industrial and medical fields. For some applications, ICA analysis 

on a workstation may be adequate, but for many others it is desirable 

to have a VLSI chip that can perform independent component 

analysis (ICA) in real-time. In Section V we propose a parallel 

architecture for the real-time implementation of ICA algorithm on 

the reconfigurable J-platform, developed in our laboratory. 

Original images    s1           s2                  s3

       

       

      

               (a)              (b)               (c) 

Histograms     s1           s2                        s3                    

                (d)          (e)                (f) 

Mixed images    x1   x2                           x3

               (g)                            (h)                            (i) 

Separated images  s1                s2                             s3

         (j)                                 (k)                            (l) 
Fig. 3   Blind separation of the original images using ICA Algorithm 

III.  J-Platform 

In recent years rapid system prototyping has attracted considerable 

attention. Newly emerging names for this technology include ‘soft-

hardware’, ‘structural software’, and ‘reconfigurable-computing’. 

The granularity at which the reconfiguration is performed can range 

from fine to medium, and medium to coarse. Based on coarse-grain 

cells, the J-Platform provides for many of the high speed 

applications such as FIR filtering of signal and images, Fast Fourier 

transform, Solution of a linear system of equations, and advanced 

applications like Reconstruction of CT images from fan beam 

projections and RGB to HSI conversion for video. The three very 

flexible cells on this platform can be used to map ultra high speed 

objectives with high performance. These cells are the MA_PLUS 

cell [7],[8] the Universal NonLinear (UNL) cell [5],[6], and the Data 

fabric cell [7],[8]. The MA_PLUS cell is a generalized multiply 

accumulate  cell  which  can  perform  any  of  several operations in  

a  highly  efficient  manner.  An  example is the accumulation of the 
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Fig.  4  Behavioral-level block diagram for ICA Algorithm 

absolute difference in a single cycle, a computation which is 

pervasive in video encoders. The UNL cell can generate nonlinear 

functions, on a selectable basis in a single cycle. The data fabric cell 

can perform data routing, register buffering, and some minor 

computations.

IV.  Fast ICA Pipelined Systolic Architecture 

Before applying the ICA algorithm on the given data, it is useful to 

perform preprocessing. Some preprocessing techniques that can 

make the problem of ICA estimation simpler and better conditioned 

are centering, whitening and band pass filtering. 

A.  Whitening:  Whitening reduces the number of parameters to be 

estimated. Whitened data x~  has its components uncorrelated and 

their variances equal to unity. In other words, the covariance matrix 

of x~  is an identity matrix. Whitening can be done using eigenvalue 

decomposition (EVD) of the covariance matrix of mixed signals x ,

C. Let V be the matrix of eigenvectors of C and  the diagonal 

matrix of eigenvalues of C.

Whitening is done by 

x~ = -1/2 VT x       (2)

Whitening transforms mixing matrix A into A
~

 where AVA T/- 21~
.

A parallel architecture for whitening is shown in Fig. 5. For 

simplicity of notation, hereafter we will drop the tilde on x.

B. Iterative Computation:  The fast ICA finds a direction, 

i.e. a unit vector w such that the projection wTx maximizes non- 

gaussianity. Non-gaussianity is measured by the negentropy J(wTx)

[1],[2] where 
2]})({})({[)( zGEuGEuJ   (3) 

Here, z is a zero mean and unit variance Gaussian variable. The 

variance of wTx has to be unity for the measure to be valid. For 

whitened data, this is equivalent to constraining the norm of w to be 

unity. To prevent different vectors from converging to the same 

maxima, we must decorrelate them after each iteration. For this, 

when we have estimated p vectors, w1, w2, …, wp, we run the 

algorithm for wp+1, and after every iteration step subtract from wp+1

the projection matrix BBT formed from the matrix B whose columns 

are w1 ,w2, …, wp.

The algorithm consists of the following steps: 

Step 1: Initialization: Choose initial random weight vector )0(w n

with norm 1.  Let B be the null matrix of the size of number of 

independent components. 

Step2: Iteration:  Let the non-linear function be 
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Fig. 5 Parallel architecture for whitening 
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The key steps of the fast ICA algorithm, namely the step in (4) 

through (6), can be mapped onto the J-platform as shown in Fig. 6. 

We will call this block as the main block. Note that a total of K

sensed data vectors, each of dimension m are fed from the top. The 

normalized updated weight vector appears at the output (bottom 

right).

Step 3: Decorrelation:

To prevent the different vectors from converging to the same 

maxima, it needs to be decorrelated. 

)1()1()1( kwBBkwkw n

T

nn
 (7) 

)1(

)1(
)1(

kw

kw
kw

n

n
n

   (8) 

Step 4: If wn(k+1) and wn(k) have converged, then go to step 5, else 

increment k to k + 1 and go to step 2. wn(k+1)

Step 5: Replace the n-th column of B with wn(k+1). After whitening,  

wn(k+1)T is added as the n-th row of W. Increment n to n + 1 and set 

k = 0.  If n  number of independent components, then go to step 2 

else stop. 

V.  Estimated Performance 

Consider that the various segments of the algorithm described above 

are pipelined. Then the performance is dominated by the segment, or 

block, that requires the maximum amount of computation time. That 

particular dominant block is the main block of Fig. 6. For a total of I

iterations, and a total of K sensed data vectors, each of size m, the 

total number of cycles can be shown to be I(10+m(k+1)). Assuming 

the word length to be 16 bits and that the MA_PLUS and UNL  

operate at 600 MHz, the total time required for m=4, K=100, and 

I=10 can be shown to be 70 µs. If a factor of 10 time-multiplexing is 
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Fig. 6 Main block of the fast ICA algorithm (without time-multiplexing) 

used to reduce the VLSI resources, then the time required would be 

~700 µs.

VI.  Time-Multiplexing on the J-Platform 

Although not presented here due to a lack of space, the architectures 

for eigenvalue decomposition and decorrelation, using the powerful 

cells of the J-platform, are also quite interesting. Also important to 

note is the fact that all three types of cells, the MA_PLUS, the UNL, 

and the DF are very high speed cells, and can therefore be 

multiplexed in time for most sensor applications in order to reduce 

the hardware cost. Estimated speed for 16 to 32 bit cells ranges from 

600 MHz to 500 MHz in 0.18 micron technology [10]. Thus, for a 

desired application speed of 20 MHz, each of these cells could 

impersonate 32 to 16 cells, but of course at the cost of some 

multiplexers and registers. 

VII.  Defect Tolerance Using Spares 

Redundancy is provided by incorporating spare MA_PLUS, UNL, 

and DF cells. A brief analysis of the yield is given below. 

Notation: p1, p2, p3,   Pr{that an MA_PLUS cell, a UNL cell, or a DF 

cell is tested good}.  For subalgorithm-i (such as the whitening), let 

N i,1 = number of MA_PLUS cells provided; Ni,2 = number of UNL 

cells provided; Ni,3 = number of DF cells provided; Mi,1 = number 

of MA_PLUS cells required;  Mi,2 = number of UNL cells required; 

Mi,3 = number of DF cells required. Then, the yield for that block is 

given by Yi = Yi,1 Yi,2 Yi,3 Yi,4, where 
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and Yi,4 denotes the probability of successful interconnection. The 

following example illustrates the yield estimation process. 

Example: Consider that m=4, that is the number of sensed variables 

is 4, so that the whitening block requires 5 MA_PLUSs, 1 UNL, and 

1 DF cells, and that using a 5:1 time multiplexing 1 MA_PLUS, 1 

UNL, and 1 DF are needed. Assume that 2 MA_PLUSs, 2 UNLs, 

and 2 DFs are physically provided. For 16 bit word length and the 

corresponding area estimates A(MA_PLUS) = 2 mm2, A(UNL) = 3 

mm2, A(DF) = 2 mm2, the yield was estimated using the above 

formula. The results are shown in the top graph of Fig. 7. On the 

other hand, the main block requires 12 MA_PLUSs, 3 UNLs, and 2 

DF cells, and that using a 5:1 time multiplexing 3 MA_PLUS, 1 

UNL, and 1 DF are needed. Assume that 4 MA_PLUSs, 2 UNLs, 

and 2 DFs are physically provided. The yield results are shown in 

the lower graph of Fig. 7. 

Fig. 7 Estimates of yield for the whitening and main blocks 

VIII.  Conclusions 

We have presented a parallel architecture for the realization of the 

ICA algorithm using coarse grain cells. Together with time-

multiplexing (to be discussed elsewhere in greater detail), this 

presents the potential for efficiently integrating the ICA with other 

DSP algorithms, for example event detection or tracking, on a 

common plane of the 3-D heterogeneous sensor. 
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