
A Parallel Architecture for the ICA Algorithm:

DSP Plane of a 3-D Heterogeneous Sensor

 V. K. Jain
1
 S. Bhanja

1
 G. H. Chapman

2
 L. Doddannagari

1
 N. Nguyen

1

 1 University of South Florida 2 Simon Fraser University

 Tampa, Florida 33620, U.S.A. Burnaby, BC, Canada V5A 1S6

Abstract: A 3-D Heterogeneous Sensor using a stacked chip has

recently been proposed. While the sensors are located on one of the

planes, the other planes provide for analog processing, digital signal

processing, and wireless communication. This paper1 focuses on its

DSP plane, in particular on the implementation of the ICA

(Independent Component Analysis) algorithm in the DSP plane.

ICA is a recently proposed method for solving the blind source

separation problem. The objective is to recover the unobserved

source signals from the observed mixtures without the knowledge of

the mixing coefficients. We present a parallel architecture for it

utilizing the reconfigurable J-platform, which employs coarse-gain

VLSI cells with high functionality, performance, and

reconfigurability. These include a Universal Nonlinear (UNL) cell,

an extended multiply accumulate (MA_PLUS) cell, and a Data-

Fabric (DF) cell. The coarse-grain approach has the distinct

advantages of reduced external interconnect, much reduced design

time, and manageable testability. Additionally, the other algorithms

needed for the 3-D HSoC can also be mapped on to the same

resources, by time multiplexing, thereby reducing the silicon area

needed.

I. INTRODUCTION

A 3D Heterogeneous Sensor using a stacked chip has recently been

proposed [1],[2]. While the sensors are located on the top plane, the

other planes provide for analog processing, digital signal processing,

and wireless communication. On the sensor plane four types of

sensors are placed, namely visible imager (Active Pixel Sensor),

infrared imager, seismic, and acoustic. The creation of integrated

systems containing both sensors and processing power is of

considerable interest in areas ranging from remote monitoring to

security and defense. Ideally one would like an ultra-small, ultra-

compact, unattended multi-phenomenological sensor system

providing an integrated classification-and-decision-information

extraction capability from the sensed environment. As illustrated in

Fig. 1, the concept is to fabricate separate wafers for each plane

(sensors, analog, digital processing, etc), mechanically polish the

Bulk 3-D or Partially Stacked Architecture

Sensors

Analog

Digital (multiple planes)

Communications/Networking

RF

Bulk 3-D or Partially Stacked Architecture

Sensors

Analog

Digital (multiple planes)

Communications/Networking

RF

Fig. 1 3-D heterogeneous system on a chip

1
This work was supported in part by NSF Grant No. 0441212.

wafers to a thin structure, add inter-plane vias, separate into chip

blocks and create a stacked 3-D structure. The target is to achieve a

minimum 10X reduction in weight, volume, and power and a 10X or

greater increase in capability and reliability – over alternative planar

approaches. These gains will accrue from (a) the avoidance of long

on-chip interconnects and chip-to-chip bonding wires, and (b) the

cohabitation of sensors, preprocessing analog circuitry, digital logic

and signal processing, and RF devices in the same compact volume.

This concept is shown in Fig. 2 in greater detail, wherein a set of

four types of sensors, namely an array of acoustic and seismic

sensors, an active pixel sensor array, and an uncooled IR imaging

array are placed on a common sensor plane. It is useful to remark

that the sensor set incorporates redundancy for defect tolerance, and

the DSP algorithm takes into account the corresponding changes in

the locations of the sensors. More details can be found in [4].

IR absorption

Sensing capacitor

Anchors

p silicon

SiO
2Al

(c) Sarcon IR

Array (Sarnoff

Corporation)

(d) A candidate IR

pixel sensor

(b) Sensor

plane

(a) 3D Heterogeneous System on a Chip

Bulk 3D or Partially Stacked Architecture

Sensors

Analog

Digital (multiple planes)

Communications/Networking

RF

Bulk 3D or Partially Stacked Architecture

Sensors

Analog

Digital (multiple planes)

Communications/Networking

RF

Acoustic and seismic sensor

Combined active-pixel

sensor and IR bolometer

array

1,0 1,2 1,1

0,0 0,2 0,1

IR

IR absorption

Sensing capacitor

Anchors

p silicon

SiO
2Al

IR absorption

Sensing capacitor

Anchors

p silicon

SiO
2Al

(c) Sarcon IR

Array (Sarnoff

Corporation)

(d) A candidate IR

pixel sensor

(b) Sensor

plane

(a) 3D Heterogeneous System on a Chip

Bulk 3D or Partially Stacked Architecture

Sensors

Analog

Digital (multiple planes)

Communications/Networking

RF

Bulk 3D or Partially Stacked Architecture

Sensors

Analog

Digital (multiple planes)

Communications/Networking

RF

Acoustic and seismic sensor

Combined active-pixel

sensor and IR bolometer

array

1,01,0 1,21,2 1,11,1

0,00,0 0,20,2 0,10,1

IR

Fig. 2 Sensor plane for 3-D heterogeneous system

Among the planes mentioned above, the DSP plane provides for

sensor data fusion, feature extraction and event

detection/classification capability. Toward these goals, this paper

focuses on the realization of the ICA (Independent Component

Analysis) algorithm [3]-[4] on the DSP plane. ICA can be used for

solving the blind source separation problem as well as for sensor

data fusion. In the first case the objective is to recover the

unobserved source signals from the observed mixtures without the

knowledge of the mixing coefficients and in the second the

extraction of the feature signals. It has the potential for a wide range

of applications in industrial, medical, and security areas because it

reduces the complex problem of dealing with high-dimensional

V - 770-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

statistical descriptions to products of one-dimensional density

functions. In this paper we present a parallel architecture utilizing

the reconfigurable J-platform [7], which employs coarse-gain VLSI

cells with high functionality, performance, and reconfigurability.

These include a Universal Nonlinear (UNL) cell, an extended

multiply accumulate (MA_PLUS) cell, and a Data-Fabric (DF) cell

[5]-[8]. The coarse-grain approach has the distinct advantages of

reduced external interconnect, much reduced design time, and

manageable testability. Additionally, the other algorithms needed for

the 3D HSoC can also be mapped onto the same resources, by time

multiplexing.

The paper is organized as follows. Section II discusses the

motivation for employing the ICA algorithm. Section III very briefly

describes the J-platform. Section IV focuses on the parallel

architecture for the computations in the fast ICA algorithm,

followed by estimates of performance in Section V. Time-

multiplexing of resources is discussed in Section VI, and defect

tolerance in Section VII.

II. The ICA and the Fast ICA

Imagine that in a room two people are speaking simultaneously and

that there are two microphones which produce time signals denoted

by x1(t) and x2(t). Each of these received signals is a weighted sum

of the speech signals produced by the two speakers denoted by s1(t)

and s2(t). Then we can express the received signals in terms of the

original signals in terms of some weighting coefficients a11, a12, a21,

and a22 that depend on the microphone characteristics and their

distances from the speakers. Clearly, it would be very useful to

recover the original speech signals from the received signals. More

generally, if there are m source signals and m received mixed

signals, then their relationship can be expressed as

)(...)()()(

.......

)(...)()()(

)(...)()()(

2211

22221212

12121111

tsatsatsatx

tsatsatsatx

tsatsatsatx

mmmmmm

mm

mm (1)

or in matrix-vector notation x(t) = A s(t). Here, for example, s1 and

s2 could be speech signals, s3 could be the sound produced by a

motor vehicle, etc. In a biomedical environment they could represent

a set of EEG signals, ECG signals, blood pressure signals, etc.

The recently developed technique called ICA, can be used to

estimate A or its inverse W = A-1 based on the information of their

statistical independence, which then allows blind separation of the

original signals from their mixtures. The technique is applicable not

only to time signals but also to images. As an example consider the

three images s1, s2 and s3 shown in the Fig. 3 (a), (b) and (c). Their

histograms are shown in (d), (e) and (f). Suppose now that the

observed images are the weighted mixtures shown in Fig. (g), (h)

and (i). We now pose the question whether and how we can recover

the original images blindly (without the knowledge of the mixing

information). The answer is a ‘yes’ based upon certain mild

assumptions which can be found in [1],[2]. Indeed, the images

estimated by the application of the fast version of ICA, called Fast

ICA [1], [2] are shown in Fig. 3 (j) (k) and (l). They are seen to be

excellent replicas of the original images.

This algorithm has a wide range of potential applications in

industrial and medical fields. For some applications, ICA analysis

on a workstation may be adequate, but for many others it is desirable

to have a VLSI chip that can perform independent component

analysis (ICA) in real-time. In Section V we propose a parallel

architecture for the real-time implementation of ICA algorithm on

the reconfigurable J-platform, developed in our laboratory.

Original images s1 s2 s3

 (a) (b) (c)

Histograms s1 s2 s3

 (d) (e) (f)

Mixed images x1 x2 x3

 (g) (h) (i)

Separated images s1 s2 s3

 (j) (k) (l)
Fig. 3 Blind separation of the original images using ICA Algorithm

III. J-Platform

In recent years rapid system prototyping has attracted considerable

attention. Newly emerging names for this technology include ‘soft-

hardware’, ‘structural software’, and ‘reconfigurable-computing’.

The granularity at which the reconfiguration is performed can range

from fine to medium, and medium to coarse. Based on coarse-grain

cells, the J-Platform provides for many of the high speed

applications such as FIR filtering of signal and images, Fast Fourier

transform, Solution of a linear system of equations, and advanced

applications like Reconstruction of CT images from fan beam

projections and RGB to HSI conversion for video. The three very

flexible cells on this platform can be used to map ultra high speed

objectives with high performance. These cells are the MA_PLUS

cell [7],[8] the Universal NonLinear (UNL) cell [5],[6], and the Data

fabric cell [7],[8]. The MA_PLUS cell is a generalized multiply

accumulate cell which can perform any of several operations in

a highly efficient manner. An example is the accumulation of the

V - 78

➡ ➡

Eigen

Decomposition

and

Whitening

Formation

of De

mixing

Matrix

Separation

of data

Observed data

Independent

components

Fast ICA for

one unit

De correlation

checking for

convergence

Eigen

Decomposition

and

Whitening

Formation

of De

mixing

Matrix

Separation

of data

Observed data

Independent

components

Fast ICA for

one unit

De correlation

checking for

convergence

Fig. 4 Behavioral-level block diagram for ICA Algorithm

absolute difference in a single cycle, a computation which is

pervasive in video encoders. The UNL cell can generate nonlinear

functions, on a selectable basis in a single cycle. The data fabric cell

can perform data routing, register buffering, and some minor

computations.

IV. Fast ICA Pipelined Systolic Architecture

Before applying the ICA algorithm on the given data, it is useful to

perform preprocessing. Some preprocessing techniques that can

make the problem of ICA estimation simpler and better conditioned

are centering, whitening and band pass filtering.

A. Whitening: Whitening reduces the number of parameters to be

estimated. Whitened data x~ has its components uncorrelated and

their variances equal to unity. In other words, the covariance matrix

of x~ is an identity matrix. Whitening can be done using eigenvalue

decomposition (EVD) of the covariance matrix of mixed signals x ,

C. Let V be the matrix of eigenvectors of C and the diagonal

matrix of eigenvalues of C.

Whitening is done by

x~ = -1/2 VT x (2)

Whitening transforms mixing matrix A into A
~

 where AVA T/- 21~
.

A parallel architecture for whitening is shown in Fig. 5. For

simplicity of notation, hereafter we will drop the tilde on x.

B. Iterative Computation: The fast ICA finds a direction,

i.e. a unit vector w such that the projection wTx maximizes non-

gaussianity. Non-gaussianity is measured by the negentropy J(wTx)

[1],[2] where
2]})({})({[)(zGEuGEuJ (3)

Here, z is a zero mean and unit variance Gaussian variable. The

variance of wTx has to be unity for the measure to be valid. For

whitened data, this is equivalent to constraining the norm of w to be

unity. To prevent different vectors from converging to the same

maxima, we must decorrelate them after each iteration. For this,

when we have estimated p vectors, w1, w2, …, wp, we run the

algorithm for wp+1, and after every iteration step subtract from wp+1

the projection matrix BBT formed from the matrix B whose columns

are w1 ,w2, …, wp.

The algorithm consists of the following steps:

Step 1: Initialization: Choose initial random weight vector)0(w n

with norm 1. Let B be the null matrix of the size of number of

independent components.

Step2: Iteration: Let the non-linear function be

xm x2 x1

v2m v22 v21

vmm vm2 vm1

.

.

.

..

UNL

m 2 1

v1m v12 v11

xm x2 x1

~ ~ ~

d

(n-1)d

MA_PLUS

DF

pm p2 p1

a1 - - - - -

a2

am

a v x v x v xi i i im m1 1 2 2 ...

rm r2 r1 - -

1/

xm x2 x1

v2m v22 v21

vmm vm2 vm1

.

.

.

.

.

.

....

UNL

m 2 1

v1m v12 v11

xm x2 x1

~ ~ ~
xm x2 x1

~ ~ ~

d

(n-1)d

MA_PLUS

DF

pm p2 p1

a1 - - - - -

a2

am

a v x v x v xi i i im m1 1 2 2 ...

rm r2 r1 - -

1/

Fig. 5 Parallel architecture for whitening

)2exp()(2 /-u-uG (4)

Then

)2exp()1()(

)2(exp)()(

22

2

/u-uug

/u-uuGu g (5)

The update of the n-th row of W is given by
T

n k)1(w .

)}(w)}x)(w(gE{-)x)(wg(x{E)1(w TT kkkk nnnn
(6a)

)1(w

)1(w
)1(w

k

k
k

n

n

n

 (6b)

The key steps of the fast ICA algorithm, namely the step in (4)

through (6), can be mapped onto the J-platform as shown in Fig. 6.

We will call this block as the main block. Note that a total of K

sensed data vectors, each of dimension m are fed from the top. The

normalized updated weight vector appears at the output (bottom

right).

Step 3: Decorrelation:

To prevent the different vectors from converging to the same

maxima, it needs to be decorrelated.

)1()1()1(kwBBkwkw n

T

nn
 (7)

)1(

)1(
)1(

kw

kw
kw

n

n
n

 (8)

Step 4: If wn(k+1) and wn(k) have converged, then go to step 5, else

increment k to k + 1 and go to step 2. wn(k+1)

Step 5: Replace the n-th column of B with wn(k+1). After whitening,

wn(k+1)T is added as the n-th row of W. Increment n to n + 1 and set

k = 0. If n number of independent components, then go to step 2

else stop.

V. Estimated Performance

Consider that the various segments of the algorithm described above

are pipelined. Then the performance is dominated by the segment, or

block, that requires the maximum amount of computation time. That

particular dominant block is the main block of Fig. 6. For a total of I

iterations, and a total of K sensed data vectors, each of size m, the

total number of cycles can be shown to be I(10+m(k+1)). Assuming

the word length to be 16 bits and that the MA_PLUS and UNL

operate at 600 MHz, the total time required for m=4, K=100, and

I=10 can be shown to be 70 µs. If a factor of 10 time-multiplexing is

V - 79

➡ ➡

{g’(u)}*w(k)

)(
1

)()(

2

kkk
m xxx

(m+2)d

wd(m+2)d

xd

UNL
0 g’

g

xg3

UNL
1 /

xg2

Rw2

gw1

Split

Rx3Rx1 Rx2

Rw3Rw1

xg1

gw2 gw3

111

111

(m+2)d split

w(k+1)

12 MA_PLUS; 3 UNL; 2 DF Cells

X*g(u)

{g’(u)}*w(k)

)(
1

)()(

2

kkk
m xxx

(m+2)d

wd(m+2)d

xd

UNL
0 g’

g

xg3

UNL
1 /

xg2

Rw2

gw1

Split

Rx3Rx1 Rx2

Rw3Rw1

xg1

gw2 gw3

111

111

(m+2)d split

w(k+1)

12 MA_PLUS; 3 UNL; 2 DF Cells

X*g(u)

Fig. 6 Main block of the fast ICA algorithm (without time-multiplexing)

used to reduce the VLSI resources, then the time required would be

~700 µs.

VI. Time-Multiplexing on the J-Platform

Although not presented here due to a lack of space, the architectures

for eigenvalue decomposition and decorrelation, using the powerful

cells of the J-platform, are also quite interesting. Also important to

note is the fact that all three types of cells, the MA_PLUS, the UNL,

and the DF are very high speed cells, and can therefore be

multiplexed in time for most sensor applications in order to reduce

the hardware cost. Estimated speed for 16 to 32 bit cells ranges from

600 MHz to 500 MHz in 0.18 micron technology [10]. Thus, for a

desired application speed of 20 MHz, each of these cells could

impersonate 32 to 16 cells, but of course at the cost of some

multiplexers and registers.

VII. Defect Tolerance Using Spares

Redundancy is provided by incorporating spare MA_PLUS, UNL,

and DF cells. A brief analysis of the yield is given below.

Notation: p1, p2, p3, Pr{that an MA_PLUS cell, a UNL cell, or a DF

cell is tested good}. For subalgorithm-i (such as the whitening), let

N i,1 = number of MA_PLUS cells provided; Ni,2 = number of UNL

cells provided; Ni,3 = number of DF cells provided; Mi,1 = number

of MA_PLUS cells required; Mi,2 = number of UNL cells required;

Mi,3 = number of DF cells required. Then, the yield for that block is

given by Yi = Yi,1 Yi,2 Yi,3 Yi,4, where

3,2,1,)1(

)(

,

,
,

,,, jpp
M

N
Y jijiji

MN
j

M
j

ji

ji
ji

 (9)

and Yi,4 denotes the probability of successful interconnection. The

following example illustrates the yield estimation process.

Example: Consider that m=4, that is the number of sensed variables

is 4, so that the whitening block requires 5 MA_PLUSs, 1 UNL, and

1 DF cells, and that using a 5:1 time multiplexing 1 MA_PLUS, 1

UNL, and 1 DF are needed. Assume that 2 MA_PLUSs, 2 UNLs,

and 2 DFs are physically provided. For 16 bit word length and the

corresponding area estimates A(MA_PLUS) = 2 mm2, A(UNL) = 3

mm2, A(DF) = 2 mm2, the yield was estimated using the above

formula. The results are shown in the top graph of Fig. 7. On the

other hand, the main block requires 12 MA_PLUSs, 3 UNLs, and 2

DF cells, and that using a 5:1 time multiplexing 3 MA_PLUS, 1

UNL, and 1 DF are needed. Assume that 4 MA_PLUSs, 2 UNLs,

and 2 DFs are physically provided. The yield results are shown in

the lower graph of Fig. 7.

Fig. 7 Estimates of yield for the whitening and main blocks

VIII. Conclusions

We have presented a parallel architecture for the realization of the

ICA algorithm using coarse grain cells. Together with time-

multiplexing (to be discussed elsewhere in greater detail), this

presents the potential for efficiently integrating the ICA with other

DSP algorithms, for example event detection or tracking, on a

common plane of the 3-D heterogeneous sensor.

References
[1] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component

Analysis, NY: John Wiley and Sons, 2001.

[2] A. Hyvärinen and E. Oja, “Independent Component Analysis:

algorithms and applications”, Neural Networks, Vol. 13, pp. 411-430,

2000.

[3] S. Bhansali, G. H. Chapman, V. K. Jain, et al. “3D Heterogeneous

Sensor System on a Chip”, Proc. SPIE Defense and Security

Symposium, pp. 413-424, April 2004.

[4] G. H. Chapman, V. K. Jain, and S. Bhansali, “Defect Avoidance in a 3-

D Heterogeneous Sensor,” Proc. IEEE Int. Symposium on Defect and

Fault Tolerance in VLSI Systems, pp. 67-75, 2004.

[5] V. K. Jain, S. Shrivastava, D. Damerow, and D. Chester, “Hardware

implementation of a nonlinear processor,” IEEE Int. Symp. on Circuits

and Systems, pp. VI-509 to VI-514, May 1999.

[6] V. K. Jain, and L. Lin, "Nonlinear DSP Coprocessor Cell -- One Cycle

Chip," Proc. IEEE Workshop on VLSI Signal Processing, pp. 256-265,

Oct. 1994.

[7] V. K. Jain, and S. Shrivastava, “Rapid system prototyping for high

performance reconfigurable computing,” Design Automation for

Embedded Systems Jr, pp. 339-350, August 2000.

[8] V. K. Jain, “Mapping a high-speed wireless communication function to

the reconfigurable J-platform,” Proc. IEEE Int. Workshop on Rapid

System Prototyping, pp. 103-108, June 2000.

[9] N. Itoh, et al., “A 600-MHz 54×54-bit multiplier with rectangular-

styled Wallace tree”, IEEE Journal of Solid-State Circuits, pp. 249 -

257, Feb. 2001.

12wwwm

V - 80

➡ ➠

