
DEADLOCK DETECTION FOR DISTRIBUTED PROCESS NETWORKS

Alex G. Olson and Brian L. Evans

Embedded Signal Processing Laboratory
The University of Texas at Austin, Austin, TX 78712 USA

{aolson,bevans}@ece.utexas.edu

ABSTRACT

The Process Network (PN) model, which consists of concur-
rent processes communicating over first-in first out unidirectional
queues, is useful for modeling and exploiting functional paral-
lelism in streaming data applications. The PN model maps eas-
ily onto multi-processor and/or multi-threaded targets. Since the
PN model is Turing complete, memory requirements cannot be
predicted statically. In general, any bounded-memory schedul-
ing algorithm for this model requires run-time deadlock detection.
The few PN implementations that perform deadlock detection de-
tect only global deadlocks. Not all local deadlocks, however, will
cause a PN system to reach global deadlock. In this paper, we
present the first local deadlock detection algorithm for PN mod-
els. The proposed algorithm is based on the Mitchell and Merritt
algorithm and is suitable for both parallel and distributed PN im-
plementations.

1. INTRODUCTION

Many successful approaches to high-performance computing ex-
ploit available parallelism in a computation. One approach finds
parallelism by analyzing sequential programs, as done by modern
compilers and processors. Another approach relies on the pro-
grammer to expose the parallelism. An example of the latter is
Kahn’s Process Network (PN) model [1], which consists of con-
current processes communicating over one-way first-in first-out
(FIFO) unidirectional channels.

The PN model captures parallelism among the processes (func-
tions) performed by the computation, but does not expose paral-
lelism available in the way data is represented. The PN model
is well suited to data-intensive processing, including streaming
media processing. One of the earliest PN models deployed in
the field was for a real-time 3-D sonar beamformer running on
a 12-processor Sun workstation, designed for deployment in sub-
marines [2]. This 3-D sonar beamformer deployment occurred
nearly 26 years after Kahn proposed the PN model.

The PN model has a natural block diagram graphical syntax in
which processes are blocks and communication channels are uni-
directional arcs. On a channel, tokens (samples) are received in the
order they were transmitted, but the tokens do not carry any time
information. This abstracting away of time coupled with a mild re-
striction on how a process accesses data on its input port(s) gives
the PN model an important property of being determinate. The
property of determinism means that the behavior of a PN program
does not depend on the way the processes are scheduled. Hence,
PN programs can be targeted onto a wide range of implementation
architectures and yet behave in the same way.

For targeting desktop and multi-processor computers, several
(non-distributed) PN frameworks exist. Many frameworks map
each Kahn process in a PN program to a thread. These frame-
works rely on the operating system to distribute the threads to
achieve load balance among the available processors [2]. How-
ever, large multi-processor systems are extremely (economically)
expensive. Currently, multiple general-purpose workstations may
be purchased for fraction of the price of a large multi-processor
system, and the multiple workstations offer greater scalability and
combined performance. For many applications, a distributed Pro-
cess Network (DPN) framework allows for greater performance
at a reduced economic cost over PN implementations running on
multi-processor systems. Unfortunately, few DPN frameworks ex-
ist [3, 4, 5].

Deadlock detection is required for scheduling PN programs in
bounded memory. One example of deadlock is that process A is
blocked waiting for data from process B while process B is blocked
waiting for data from process A. Bounded memory PN implemen-
tations place bounds on queue sizes [6], which can create “artifi-
cial deadlocks”. However, distributing the PN model incurs chal-
lenges as channels take on unpredictable latencies. Even though
the model itself is untimed, a distributed implementation contains
many challenges relevant to distributed systems. The lack of a
global clock and shared memory make correct deadlock detection
more difficult.

In this paper, we present the first local deadlock detection al-
gorithm for PN models. The proposed algorithm is based on the
Mitchell and Merritt algorithm and is suitable for both parallel and
distributed PN implementations. We also describe a distributed PN
implementation using the proposed deadlock detection algorithm.

2. THE PROCESS NETWORK MODEL

2.1. Kahn

In 1974, Kahn proposed [1] a model of computation based on
data tokens (and their flow). The term token is a general term
for any unit of data. Kahn suggested that multiple processes exe-
cuting concurrently and communicating over unidirectional chan-
nels could perform a computation. His channels may be mod-
eled as reliable FIFO queues, but may be unbounded in length.
The channels/queues provide a loose coupling between producers
(processes emitting tokens) and consumers (processes receiving
tokens). Reads from a channel are destructive in the sense that
tokens are consumed (dequeued).

Kahn’s PN model is determinate since the history of tokens
on any channel does not depend on how the processes are sched-

V - 730-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

uled. The correctness of a computation under the PN model is not
affected by the rates or order in which processes execute. A nec-
essary condition for a PN to be determinate is the use of blocking
reads. If a process attempts to read more tokens from a channel
than are available, the process blocks until enough data becomes
available. Furthermore, a process is not allowed to test a channel
for the presence of tokens. A process may attempt to read from at
most one input port or write to at most one output port at a time.

2.2. Parks

Kahn’s assumption of “unbounded channel capacities” translates
into “unbounded memory” usage when the PN model is imple-
mented on a computer. Since the PN model is Turing complete
[1], one cannot predict memory requirements statically [7]. In
1995, Parks proposed [6] an algorithm for scheduling PN’s un-
der bounded channel capacities. He proposed that a process is also
blocked if it attempts to write one or more tokens to a channel lack-
ing sufficient available capacity. This has the potential to create,
using Parks’ terminology, artificial deadlock. Artifical deadlocks
only arise from placing bounds on channel capacities. They do not
occur in the original Kahn model. Park’s algorithm first waits until
the system reaches global deadlock and then considers all chan-
nels to which a blocked process is writing. Of these, the algorithm
increases the capacity of the smallest full channel, so the write to
that channel can complete. He proves this algorithm finds a set of
bounded channel capacities whenever such bounds exist.

2.3. Geilen and Basten

Geilen and Basten [8] show that Parks’ algorithm can be applied
when local deadlocks are detected, instead of waiting for detec-
tion of global deadlock. Their scheduling algorithm also main-
tains bounds on channel capacities when such bounds exist. This
is significant because not all local deadlocks will eventually cause
global deadlock. For example, if a system is composed of two dis-
joint computations, deadlock in one will not cause deadlock in the
other.

2.4. Allen and Evans

Allen and Evans combined [2] the PN model with Karp and Miller
computation graphs[9]. In the resulting model, known as Compu-
tational Process Networks (CPN), a process may consume fewer
tokens than it reads. This model is highly useful for many com-
putations, such as FIR filters. The performance of some computa-
tions is limited more by memory bandwidth rather than CPU per-
formance. The CPN model allows memory bandwidth to be halved
as it often eliminates the need to copy tokens from the channel
buffer into an application-specific buffer. Artificial deadlock, aris-
ing from placing bounds on channel capacities, is still possible.

3. DEADLOCK DETECTION

3.1. Previous Work

Since the PN model is Turing complete[1], deadlock is only de-
tectable at run-time. Only global deadlock detection has been im-
plemented in a few non-distributed PN implementations [10, 11,
12, 13]. These detect only global deadlock. A few DPN imple-
mentations exist [3, 4, 5]. Of these, none detects deadlocks. What
follows in the next section is an original application of an existing
deadlock detection algorithm to DPN’s.

3.2. Mitchell and Merritt’s Algorithm

Kahn’s specifies in his PN model that a process may be blocked
on at most one other process at a time. From the large body of dis-
tributed deadlock detection algorithms, we consider the set com-
monly known as ‘single-resource’ algorithms [14]. This class of
algorithms assumes that a process is waiting on at most one other
process at a time. An important aspect of these algorithms is they
are not concerned with actual management of resources, but only
the manner in which a process waits on another process. One very
simple algorithm was developed by Mitchell and Merritt [15] and
was developed for distributed databases. We show a novel appli-
cation of this algorithm to the PN model.

In their algorithm, each process contains two labels: a public
label and a private label. In this context, a label is just an abstrac-
tion for a numeric value. Initially, the public labels of all processes
are initialized to unique values. Each process’s private label is set
equal to its corresponding public label. When a process X begins
waiting on another process Y , process X sets both its labels to a
value greater than the public labels of both X and Y . This step is
known as the blocking step and the waiting process, X , is said to
be blocked. While some process X is blocked, it periodically polls
the public label of the process,Y , for which it is waiting. During
this time, if the public label of process Y becomes greater than that
of X , X sets only its public label to be equal to that of Y . This
action is known as the transmit step. For a cycle of N waiting
processes, the transmit step will be invoked at most N − 1 times
before deadlock is detected. This algorithm also ensures that in a
cycle of waiting processes, exactly one process detects deadlock.
Furthermore, false deadlock detection is impossible. These two
qualities make this algorithm an ideal deadlock detection scheme
in the implementation of a PN scheduling algorithm.

This algorithm creates larger labels in the system every time
a process becomes blocked (during the execution of the blocking
step). While a process is blocked, the largest label tends to prop-
agate in the opposite direction of a sequence of waiting processes.
Essentially deadlock is detected when a label makes a round-trip.
A graphical example is depicted in Figs. 1, 2, and 3. In the follow-
ing discussion, pn will refer to the process with n as the second
component of its private label.

Fig. 1 shows the state of the labels at system initialization;
each process’s public label is unique. Although each label is shown
as an ordered pair, the two components may be considered as the
high-word and low-word portions of a single integer [15]. The es-
sential requirement is that all private labels remain unique through-
out the execution of the algorithm. Fig. 2 shows the state of the
system after a cycle of three waiting processes perform the block-
ing step of the algorithm. To arive at this state, p1 begins waiting
(performs the ‘blocking step”) on process p3. Then process p5 be-
gins waiting on p1. Lastly, p3 begins waiting on p5. Finally, Fig. 3
shows the state of the system after two processes have performed
the transmit step. This state results after p5 performs the trans-
mit step, followed by p3. Here, only process p3, with private label
(7, 3), detects the deadlock. Note, in a real system, some processes
may be executing the blocking step while others are concurrently
executing the transmit step. This may cause the sequence of la-
bel changes to differ. However, the correctness of the algorithm
is maintained, mainly due to the fact that label values are non-
decreasing.

V - 74

➡ ➡

Fig. 1. Initial state. Each process’s public labels are unique.

Fig. 2. State after the ‘blocking’ step has been performed by each
process in the cycle.

4. DEADLOCK DETECTION THEORY IN DISTRIBUTED
PROCESS NETWORKS

The fact that the Mitchell-Merritt algorithm is resource-based does
pose a subtle problem in a DPN. A cycle of blocked Kahn pro-
cesses does not directly imply the existence of deadlock. If there
are any tokens en route (or untransmitted) to any blocked process,
the system is not necessarily deadlocked. Conceptually, the ‘re-
source’ in a PN is the token a blocked process is waiting to read
or the queue slot a blocked process is waiting to write. Therefore,
it is necessary for a blocked Kahn process to ensure that the rele-
vant channel is empty before performing the blocking step of the
Mitchell-Merritt algorithm. This is a simple task if two assump-
tions are made. First, the channels guarantee reliable and FIFO
delivery. This assumption can be met by many communication
protocols, such as TCP. Second, a total ordering exists over all
control messages and token data exchanged between any two pro-
cesses. This second assumption can be met easily by sending token
data and control messages along a single, reliable, FIFO channel.
When a process becomes blocked, it requests the public label of
the process on which it is waiting. Upon receipt of such a request,
the waitee will reply with its public label. Between the request and
the reply for the label, if the blocked process becomes unblocked,
it will not perform (upon receipt of the label) the blocking or trans-
mit step of the Mitchell-Merritt algorithm. The FIFO delivery of
the communication channel ensures that any en route token data
will be processed before the requested label. In the context of dis-
tributed systems, the label request message functions as a flush
message.

A characteristic of the Mitchell-Merritt algorithm is that the
timing of when a blocked process performs the blocking or trans-
mit steps is not critical. To reduce network traffic, it may be de-
sirable for a blocked Kahn process to delay the sending of a ‘la-
bel request’ message before performing either the blocking step or
transmit step of the algorithm. Good choices of the delay depend
on the communication channel latency and tolerable deadlock de-
tection latency.

In addition, (for deadlock detection) the quantity of state in-
formation required is independent of the number of channels. Fur-

Fig. 3. State after two executions of the ‘transmit’ step. Deadlock
has been detected.

thermore, the amount of state each process is required to store is
independent of the number of processes in the system. The sim-
plicity of the Mitchell-Merritt algorithm makes it ideal for both
parallel and distributed PN implementations.

5. IMPLEMENTATION

5.1. Channel Description

We have implemented a high-performance DPN framework in C++
using POSIX threads.

In our implementation, we use the TCP/IP protocol for com-
munication links between two processes. Rather than operating at
the token-level, our framework operates at the byte-level. This de-
sign choice allows our framework to handle both large and small
tokens efficiently. We also define two types of channels (relative to
each process): input channels and output channels. Input channels
are those channels from which a Kahn process reads tokens. Out-
put channels are those channels to which a Kahn process writes
tokens. Each channel, input or output, contains a queue. For out-
put channels, the queue aggregates tokens before transmission to
better utilize network bandwidth. For input channels, the queue
functions as the Kahn channel queue. By explicitly modeling the
Kahn channel queue as a real queue, we allow control data to be
exchanged over the communication link even when both processes
are blocked.

The communication between any two processes is fairly sim-
ple. When the communication link is first established, the input
channel sends the capacity of its queue over the link. The output
channel uses this value to maintain a lower bound on the avail-
able capacity of the input channel’s queue. Each time a process
consumes a token from its input channel, the channel, after a very
small delay, sends a message across the link that indicates how
many bytes were consumed. This is essentially a simple slid-
ing window algorithm being used for flow-control. Since we use
TCP/IP for the communication link, reliable and FIFO delivery of
data is guaranteed.

Each process in our framework consists of two threads: a
computation thread and a communication thread. The computa-
tion thread is implemented by the user and performs the compu-
tation, such as FIR filtering. The communication thread is imple-
mented by the framework and manages communication between
the TCP/IP link and the queues on each end. The queues provide
an interface between the two threads. For reads, the computation
thread blocks until a sufficient amount of data is available in the
input channel’s queue. When token data is written to an output
channel, the channel decrements its estimate of the available ca-
pacity of the input channel. When token data is read from the
input channel, the channel sends a message indicating the number
of bytes that were consumed. Upon receipt of such a message, the

V - 75

➡ ➡

output channel increments its estimate of the capacity of the input
channel by that amount. Thus at all times, this count is a lower
bound on how much token data (in bytes) can be immediately sent
over the link.

5.2. PN and CPN Support

Channels in our implementation support both Kahn PN semantics
(where all read tokens are consumed) as well as CPN semantics
(where not all read tokens are consumed). We also provide a zero-
copy operation for CPN’s, which is similar to [2]. That is, a pro-
cess acquires read and write pointers into the queues rather than
copying data in or out. This reduces memory bandwidth require-
ments in high data-rate applications,

5.3. Deadlock Detection

When a process blocks for a sufficient amount of time, Mitchell
and Merritt’s algorithm is activated. We currently use a fixed thresh-
old of time. The blocked process sends a “Label Request” message
to the process on which it is blocked. Upon the message’s receipt,
a process will transmit any queued tokens and then reply with its
public label. If the blocked process remains continuously blocked
between the request and receipt of the label, it will perform the
blocking step of the algorithm. Otherwise, the label is discarded
and another request will be sent after some time. The same tech-
nique is used for successive executions of the transmit step of the
deadlock detection algorithm.

5.4. Performance and Memory Requirements

The memory requirement of the deadlock detection algorithm is
very low and independent of the number of processes or channels
in a system. Each process stores only two pairs of labels, which
we represent as an ordered pair of 32-bit integers. The network
and CPU overhead is negligible since the algorithm only activates
intermittently and only while a process is blocked. While most
of the discussion has focused on DPN implementations, this al-
gorithm is equally suitable for parallel PN implementations. In a
non-distributed parallel implementation, the communication chan-
nel could be a shared block of memory. Events and callbacks could
replace the sending of label requests and replies. Any local dead-
lock would be detected almost instantaneously.

Fig. 4. Structure of our implementation. Each circle represents
a process. Each process contains two threads, for computation
and communication. For each channel of each process, a queue
provides the interface between the two threads.

6. CONCLUSION

For many applications, distributing the Process Network model of-
fers greater (scalable) performance at reduced economic cost over
a non-distributed implementation. However, bounded memory ex-
ecution of Process Networks requires run-time deadlock detection.
In this paper, we illustrate that the Kahn PN network model is

really a single-resource model for the purposes of deadlock de-
tection. An original contribution of this paper is the application
of a distributed deadlock detection algorithm to the Process Net-
work model. This algorithm detects both local and global dead-
lock. Finally, we present the design of a DPN implementation
that integrates this algorithm with techniques for achieving high-
performance. Our implementation is available for download at
http://www.ece.utexas.edu/∼bevans/projects/pn

7. REFERENCES

[1] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Information Processing, pp. 471–475, 1974.

[2] G. E. Allen and B. L. Evans, “Real-time sonar beamforming on work-
stations using Process Networks and POSIX threads,” in IEEE Trans.
Signal Processing, Mar. 2000, pp. 921–926.

[3] A. Amar, P. Boulet, J.-L. Dekeyser, and F. Theeuwen, “Distributed
Process Networks using half FIFO queues in CORBA,” INRIA,
Tech. Rep. RR-4765, Mar. 2003. [Online]. Available: http:
//www.inria.fr/rrrt/rr-4765.html

[4] T. Parks and D. Roberts, “Distributed Process Networks in Java,” in
International Workshop on Java for Parallel and Distributed Com-
puting, Nice, France, Apr. 2003.

[5] J. Vayssière, D. Webb, and A. Wendelborn, “Distributed Process
Networks,” University of Adelaide, Australia, Tech. Rep. TR 99-03,
Oct. 1999, draft. [Online]. Available: http://www.cs.adelaide.edu.au/
∼dpn/documents/tr9904.ps

[6] T. M. Parks, “Bounded scheduling of Process Networks,” Ph.D.
dissertation, University of California at Berkeley, 1995. [Online].
Available: citeseer.ist.psu.edu/parks95bounded.html

[7] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded
memory using the token flow model,” Ph.D. dissertation, University
of California at Berkeley, 1993. [Online]. Available: citeseer.ist.psu.
edu/buck93scheduling.html

[8] M. Geilen and T. Basten, “Requirements on the execution
of Kahn Process Networks,” in Programming Languages and
Systems, 12th European Symposium on Programming, vol. 2618.
Berlin, Germany: Springer-Verlag, 2003. [Online]. Available:
http://www.ics.ele.tue.nl/∼mgeilen/publications/esop03.pdf

[9] R. M. Karp and R. E. Miller, “Properties of a model for parallel com-
putations: Determinacy, termination, queueing,” in SIAM Journal,
vol. 14, Nov. 1966, pp. 1390–1411.

[10] M. Goel, “Process Networks in Ptolemy II,” Master’s thesis,
University of California at Berkeley, Dec. 1998. [Online].
Available: http://ptolemy.eecs.berkeley.edu/publications/papers/98/
PNinPtolemyII/

[11] B. Vaidyanathan, “Artificial deadlock detection and correction
in bounded scheduling of Process Networks,” Oct. 1999, uT
Austin EE 382C-9 Embedded Software Systems Course Project.
[Online]. Available: http://www.ece.utexas.edu/∼bevans/courses/
ee382c/projects/fall99

[12] R. Stevens, M. Wan, P. Laramie, T. M. Parks, and E. A.
Lee, “Implementation of Process Networks in Java,” University
of California, EECS Dept, Berkeley, CA, Tech. Memo. No.
M97/84, 1997. [Online]. Available: http://www.ait.nrl.navy.mil/
pgmt/PNpaper.pdf

[13] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M.
Kruijtzer, P. Lieverse, K. A. Vissers, and G. Essink, “Yapi: appli-
cation modeling for signal processing systems,” in IEEE Int. Design
Automation Conference. ACM Press, 2000, pp. 402–405.

[14] K. M. Chandy, J. Misra, and L. M. Hass., “Distributed deadlock de-
tection,” in ACM Trans. on Comp. Systems, vol. 1, no. 2, May 1983,
pp. 144–156.

[15] D. P. Mitchell and M. J. Merritt, “A distributed algorithm for dead-
lock detection and resolution,” in ACM Symposium on Principles of
Distributed Computing, 1984, pp. 282 – 284.

V - 76

➡ ➠

