
DYNAMIC CONFIGURATION OF DATAFLOW GRAPH TOPOLOGY FOR DSP SYSTEM DESIGN

Dong-Ik Ko and Shuvra S. Bhattacharyya

{dik,ssb}@eng.umd.edu

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,

University of Maryland, College Park, 20742, USA.

ABSTRACT

Dataflow is widely used for designing DSP applications. Despite

its intrinsic advantages, one weak point is its difficulty in flexible

expression of applications with data dependent change in execu-

tion structure. This paper suggests an approach to providing

dynamically configured dataflow graph topologies using a new

modeling and synthesis technique called DGT (Dynamic Graph

Topology). DGT builds on PSDF semantics [1]. All possible graph

topologies for a given graph are obtained at a compile time and the

corresponding graph based on parameters and data is dynamically

set up in an efficient manner at runtime before the invocation of

the associated graph. Systematic methods for reducing code and

buffer size are applied based on characteristics of each configured

graph. We have compared DGT against conventional modeling

approaches through a detailed case study of an MPEG 2 video

encoder system, and our experiments demonstrate the efficiency of

the DGT approach.

1. RELATED WORK

To handle data driven changes in execution structure, several data-

flow models such as CDDF [11], BDF [4], and BDDF [9], have

been proposed. CDDF uses control tokens to determine the token

transfer at an actor port. However, determination by a control

token is applied to the actor in the next phase of execution, there-

fore, control tokens are not present at the moment that the actual

phase is determined. BDDF introduces dynamic ports and an

upper bound is provided for the data rate so that each dynamic port

can keep the model bounded. However, control flow depends on

FSMs. Using FSMs for minor changes of control flow with data-

flow graphs can make application models unnecessarily compli-

cated and result in limited flexibility. BDF provides “SWITCH”

and “SELECT” actors to determine control flow. For satisfying

bounded memory and consistency, a symbolic function of proba-

bility is introduced. This function increases the complexity of

solving the balance equations (for verifying sample rate consis-

tency), and results in the possibility of “weak consistency,” which

is less desirable in an implementation.

To provide for more powerful and efficient data dependent
execution related to application mode changes, where entire
graphs or subsystem are replaced or reconfigured at run time, this
paper tackles dynamic set-up of dataflow graph topologies before
the graphs are invoked. All configurations of possible graph topol-
ogies are pre-computed at compile time and stored for usage at run
time. At runtime, the initialization step of DGT generates an
appropriate graph topology based on parameters extracted from
data being delivered and picks up a pre-computed schedule to fit
the current parameter configuration. However, not all configura-
tions are valid or can be obtained at a compile time. Some configu-
rations may cause deadlock or inconsistency or may not be
predictable at compile time. Reconfiguration of dataflow graphs is
carefully considered in [10]. [10] analyzes the reconfiguration of a

model based on behavioral types and extracts the least change
context to check approximate semantic constraints. This paper
statically checks the validity of each configuration like [10] and
keeps the scheduling results for use at run time. The main distin-
guishing feature of DGT is that it efficiently supports multi-func-
tion applications by configuring graph topologies dynamically.
There are two kinds of multi-function applications. The first,
which we call type-I applications, are exclusive-or applications,
where only one graph topology is selected from multiple sets of
possible graph topologies for a given application. The other, which
we call type-II applications, are concurrent applications where two
or more applications with different graph topologies are running at
the same time. This paper focuses on type-I (exclusive-or) applica-
tion for experimentation of DGT. For synthesis of type-I applica-
tions, [5] extracted commonality measures of each actor and used
these values to determine a hardware bias of each actor by hard-
ware oriented partitioning. This paper focuses on software imple-
mentation, and applies novel scheduling techniques based on
graph characteristics to reduce code and buffer size, which is criti-
cal for DSP software. The DGT approach provides efficiency and
flexibility in modeling applications with data driven change of
graph topology from runtime parameter changes by using pre-
computed information (information related to graph topology,
scheduling, code/buffer size, bounded memory, etc.).

2. DYNAMIC GRAPH TOPOLOGY

2.1 Brief description of PSDF graphs

PSDF specification consists of three distinct graphs: 1) the init

graph i; 2) the subinit graph s; and 3) the body graph b. Intu-

itively, the body graph models the main functional behavior of the

subsystem, whereas the init and subinit graphs control the behav-

ior of the body graph by appropriately configuring the body graph

parameters. The init graph is invoked prior to each invocation of

the associated (hierarchical) parent subsystem, , while

the subinit graph is invoked prior to each invocation of the associ-

ated body subsystem b, thus allowing for two distinct “frequency

levels” of reconfiguration control.

2.2 DGT (Dynamic Graph Topology) specifications

As applications for embedded systems grow more complicated,

the requirement of dynamic on/off of actors and ports of actors as

well as the change of transfer rates(production and consumption

rates) on dataflow edges is unavoidable. To support dynamic

change of graph topologies, actors, ports of actors and transfer

rates should be considered to be adaptable based on the delivered

data. Dynamic change of a graph topology requires run-time

scheduling, which potentially causes problems of execution time

overhead. To alleviate this overhead, this paper provides for

dynamic change of graph topologies through schedules that are

pre-computed at a compile time. DGT is based on PSDF semantics

[1],[6], but is significantly more flexible than PSDF in that it

allows graph actors and edges to be treated as dynamic parameters

as well as the more standard types of parameters supported in the

dynamic reconfiguration capabilities of PSDF. Therefore, in DGT,

the transfer rate of each port of a graph, itself, is determined by a

V - 690-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

special subgraph, called the init graph, as in PSDF [1], so that the

consumption rate and production rate of each port of the graph can

be determined before the invocation of the associated DGT graph.

However, in DGT, the subinit graph s controls the behavior of

the associated body graph by determining the graph topology of

the associated body graph before the invocation of the body graph.

The number of possible graph topologies is predicted at a compile

time.

Figure 1 shows that how a subinit graph can extract appropriate

header information and set up parameters (:param) with the

required information for the associated body graph. An appropri-

ate graph is selected from a set of possible graphs(

by the subinit graph with (:param). This mechanism is effective

because many data tokens for modern DSP applications are deliv-

ered as frames with a header part and a payload part.

Here, we classify actors and ports into two categories based
on the presence or absence of data driven change of their behav-
iors. Actors and ports that are not changed in a graph topology are
called fixed actors () and fixed ports (), respectively, while
actors and ports having potential dynamic changes are named as
varying actors () and varying ports (). Here, one point that
requires careful consideration is that a fixed actor() can have a
varying port () since a fixed actor () can appear with different
types of ports. The subinit graph s dynamically sets up varying
actors and varying ports based on data being delivered and pro-
duces an appropriate graph topology for the associated body
graph. Consistency and bounded memory for each possible set of
graph topologies are verified at compile time. At runtime, the sub-
init graph s sets up an appropriate graph topology for the associ-
ated body graph and picks up an appropriate pre-computed
schedule that also contains code and buffer size minimized for the
configured graph. Code and buffer size minimization is obtained
by a scheduling technique appropriately chosen depending on
graph characteristics. In DGT, verification of validity of schedules
can be performed at a compile time and valid schedules can be
guaranteed and can be ready to be used at runtime without the
overhead of dynamic scheduling. At runtime, the subinit graph s
looks up pre-computed schedules in a table with the appropriate
parameter values.

Figure 2 shows an example of how DGT is applied to config-
ure a body graph. Here, represents all the possible sets
of ports to which the varying output port of the actor can be
connected. represents a counterpart of an input port.
In figure 2, dotted line represents varying edges while solid lines
represents fixed edges. Also, a dash filled actor represents a vary-
ing actor while a white blank actor represents a fixed actor. Each
actor can have varying ports and fixed ports together. The transfer
rates or connections of varying edges are data dependent while the
transfer rates and connections of fixed edges are fixed. Varying
edges and varying actors can be turned on or off based on the data
tokens delivered.

The following equation represents a general case where the
 varying output or input port of the actor connects to the

input or output port of another actor or does not connect to

anything.

This is an example of the input port of in Figure 2.

Here, means there are no edges from or to the associated port.

The graph () is made up of (a graph with

varying graph components) and (a graph with fixed graph

components). By separating from parts that are common across

different subsystems, possible overlapping of resources among dif-

ferent subgraphs can be removed.

2.3 Scheduling of DGT specifications

A DGT subsystem produces various sets of configurations for the

associated body graph b. For each graph generated, checking of

both synchrony (synchronous dataflow [8] behavior) for the dura-

tion of the configuration and bounded memory is performed. For

this purpose, a graph is considered as a general fixed graph after

the subinit graph configures the graph topology. All of the major

configurations for the corresponding graph are captured at the

compilation stage and are kept for use at runtime. The subinit

graph s extracts parameters from the header part of data being

processed and then sets appropriately the associated body graph

b. For many applications, such as those involving a few to sev-

eral or even dozens of different modes, the number of combina-

tions of DGT configurations is manageable for reasonable

implementation platforms. Here, the transfer rate of every port of

each actor within a body graph under DGT can be changed by the

associated graph s.

A useful restriction in the use of DGT is that when a DGT
graph is embedded within a dataflow model other than DGT or
PSDF, the transfer rates of interface ports of a DGT graph must
generally be fixed even though the graph topology inside the DGT
subsystem can be vary dynamically. This assumption allows DGT
graphs to be embedded easily in other dataflow models with the
external appearance of simple SDF actors. Therefore, the transfer
rates of input/output ports of the DGT graph, itself, should be set
by the init graph i before the DGT graph is invoked and should
be kept invariant during the entire iteration of the graph.

Figure 3 shows an example that illustrates DGT scheduling
within SDF. The DGT graph takes two tokens and produces
two tokens. Therefore, the schedule for Figure 3 will be like

. However, by looking into the DGT graph , we see
that the actor is a varying actor that can be removed by the sub-
init graph s on demand. Also, the transfer rates of actor are not
fixed. The actor has one output port, which is a varying port.
Therefore, the actor can be connected to either the actor or
the actor . The actor has one varying input port and one fixed
output port. The actor consumes one token either from actor
or actor and produces two tokens to a fixed output port. The

schedule of the DGT graph can be either or .
The schedule for the graph is and the schedule for
the graph is either or . The schedule for each
graph is hierarchically maintained in this manner. Here, the two

subinit

Identifiers

G1, G2 or G3

body

extract a

header

X:param X:param

domain(X)

= {G1, G2,G3}

Figure 1. DGT(Dynamic

Graph Topology)

1 2

3 5

6 7

f i x e d c o n n e c t i o n
d y n a m i c c o n n e c t i o n

4 b

is

p a r a m e t e r i z a t i o n

X

G G G

X

af pf

av pv
af

pv af

pv

o
i ak

ith ak
pv

in
i ak

ith ak jth
an

pv

o
i ak pv

in
j an pv

in
i ak pv

o
j an==

st a

pv

in
a pv

o
a pv

o
a pv

o
a pv

o
a=

G G Gf Gv= Gv
Gf

Gf

s e
b

b
a

a b
c c

c a
b

Figure 3. DGT graph under

SDF

s

a b c e
1 m n 1 2 1

b

is

D G T graph

parameterization

1 2

SDF

G

s

a b c e
1 m n 1 2 1

b

is

D G T graph

parameterization

1 2

SDF

G

Figure 4. Part of an MPEG2

video encoder

B

P

I

2 4 2 8 2 4

2 3 2 5

2 5

SAS

MAS

MAS

G1

G2

G3

1GM 1GD

2GD

3GD

1GM

2GM

ma b nc a c
G s e

ma b nc a c

Figure 2. An example of a

graph under DGT

V - 70

➡ ➡

schedules for the graph are SAS (Single Appearance Sched-
ule)[3] where each actor appears only once. The following section
shows how different scheduling techniques are applied systemati-
cally based on characteristics of the configured graphs.

2.4 Minimization of code and buffer requirements

According to graph characteristics and the granularity (complex-

ity) of each actor, efficient scheduling considering both code size

and buffer memory requirements is important when synthesizing

implementations. Since a DGT system supports runtime adjust-

ment of pre-computed schedules, decisions on the methods for

minimizing code and buffer requirements can be made statically.

For an application graph, the ratio of code size vs buffer size as

well as graph characteristics are important factors to select an

appropriate technique for efficient minimization of both code and

buffer size. For example, for an application with a very small code

size but requiring high buffer size, minimizing code size by SAS

(Single Appearance Schedule) is not likely to lead to a cost-effec-

tive solution. Instead, a carefully-constructed MAS (Multiple

Appearance Schedule) is likely to be a better choice due to the

advantage of further buffer size reduction at the expense of some

code size increase. In our DGT synthesis approach, for efficient

multiple appearance schedule generation, we have adapted the

MAS approach of [7], and for SAS generation, techniques from

[1], [2] and [3] are applied. For selection between MAS and SAS

implementation, we have formulated a normalized criterion

(:Schedule Selector) to determine the most appropriate tech-

nique.

 is the uniformity metric of [7] (explained below) and is the

ratio of total code size to the average data frame size obtained

based on simulation. and are user-defined weight values

and are chosen based on simulation. is proportional to the num-

ber of edges whose transfer rates are multiples of one another. A

high value of reflects potentially low opportunity for buffer size

reduction using the techniques of [7]. suggests which factor

between code size and buffer size is more important to reduce the

overall memory requirements. A graph with a higher suggests

that a scheduling technique that is more efficient in reducing code

size produces a better result rather than a buffer-oriented tech-

nique. Consequentially, a high value suggests that an SAS is

appropriate for the graph.

Figure 4 shows part of an MPEG2 encoder modeled using
our DGT technique. Some of the actors can operate with different
parameters and transfer data at rates depending on the graph() in
which the actor is included. Those actors are symbolized as . In
Figure 4, represents MC (motion compensators) and rep-
resents a DCT (Discrete Cosine Transform). In MPEG2, the
frame requires two MCs and the frame requires one MC, while
the frame does not need a MC. Therefore, three different graph
topologies are required within the application, and the particular
topology to use at a given time depends on the picture frame type
(, , or).

Each graph topology has different values depending on
the characteristics the graph. For G1 of frame, SAS implemen-
tation is selected, while for G2 of frame and G3 of frame,
MAS implementation is selected. In Figure 4, the behaviors of the
actor and the actor can be changed depending on the
graph characteristics and the change of parameters, while other
actors are invariant.
From a DGT representation, we can often reduce code size by

removing overlapping graph components across graph sets. If

is the number of common actors in graphs with different configu-

rations, and is the number of graphs () including the

common actor ().

2.5 Operational semantics of DGT

Figure 5 shows the operational semantics of DGT operating with

any type of dataflow model. Because of its ability to operate with

different types of dataflow models, DGT is more accurately char-

acterized as a meta-modeling technique. Each hierarchical actor

() in a DGT system also can be viewed as an independent graph

and can have its own schedule. In our implementation of DGT, we

maintain schedules in a hierarchical manner. Therefore a graph

() has the schedule for itself and also maintains schedules for

each hierarchical actor() under the graph (). Each hierarchical

actor under also maintains the schedule for itself and sched-

ules for graphs representing every hierarchical actor inside

. This way, the schedule for the graph and schedules for sub

graphs of s inside are maintained in a hierarchical way until

graphs in the lowest level of the hierarchy are scheduled.

The function is a function to schedule a
graph . For all general hierarchical actors () inside except

s of DGT, is applied. The function
is applied for of DGT within . Then is applied to
have the schedule for the graph , itself and schedules for s in

 kept linked together. The function in
 generates the corresponding graph with given

parameters. Ultimately, in a gener-
ates an appropriate schedule based on the graph topology along
with code and buffer size suitable for each graph. For each config-
ured graph, type checking of the given graph is performed and
then if is bigger than for selecting an schedul-
ing technique, the chosen SAS based technique ()
is applied. Otherwise, the chosen MAS based technique
() is chosen.

3. EXPERIMENTAL RESULTS

In our experiments, we developed an MPEG2 video encoder as an

application example. An MPEG2 video encoder has some differ-

ent operational blocks depending on the picture frame, but shares

most of the blocks across picture frames (I, B or P frame). We

compared the total memory usage of a DGT graph implementation

with a conventional separate-graph approach. A separate graph

approach uses a combination of SDF and FSM. Each SDF graph

processes a different picture frame. The DGT method selects dif-

ferent scheduling methods (SAS or MAS) depending on graph

characteristics. For obtaining the code size, we used the Texas

Instruments Code Composer simulator of the 64XX series proces-

sor. As the frame size increases, the impact of buffer size on total

memory usage becomes larger than the impact of code size. We

applied SAS, MAS and a combination of SAS and MAS to each

case. In C3 and C6, (see Table 1) while SAS is selected for both

128*128 and 256*256, either SAS or MAS is selected for each

picture frame (I, B and P) dynamically for a frame larger than

256*256. This is because a trade-off between code size and buffer

size exists in the vicinity of 480*720 size.

Table 1 shows that the DGT approach reduces total memory
usage from 60% to 67% compared with a separate graph approach
through shared code and the streamlining of scheduling methods to

SS

SS +=

SS

G
XG

M DG

B
P

I

I P B
SS

B
P I

MG DG

m

i Gi
ith Ci

ReducedCodeSize codeSize Ci

j =

i
–

i =

m

=

G

G

G

sub
G

G

scheduleX G
G G

scheduleX scheduleDGT
G linkSC

G
G setGraphTopo y
scheduleDGT

schedulerXDF scheduleX

SS ThresholdSS
SASTechnique

MASTechnique

V - 71

➡ ➡

fit graph characteristics. The runtime overhead for finding a proper
schedule for each graph topology is only , where
is the number of varying graph components (varying actors and
varying edges) and is the number of possible schedules for each
DGT graph depending on the topology, which is relatively modest
compared with the complexity of typical signal/image processing
actors.

4. CONCLUSIONS AND FUTURE WORK

This paper develops efficient support for dynamic graph topolo-

gies for dataflow graphs requiring different execution structures

based on dynamic parameters, and data being processed. In addi-

tion to providing efficient and flexible support for multiple modes

of system operation, DGT allows us to reduce overall memory size

by systematically sharing code and applying tailored scheduling

methods across the different graph topologies that make up a DGT

application. Useful directions for future work include integrating

DGT with other dataflow models as a meta-modeling technique,

and implementation of concurrent applications through DGT

semantics under resource and performance constraints.

5. REFERENCES

[1] B. Bhattacharya and S. S. Bhattacharyya. Parameterized data-

flow modeling for DSP systems. IEEE Transactions on Signal Pro-

cessing, 49(10):2408-2421, October 2001.

[2] S. S. Bhattacharyya, R. Leupers, P. Marwedel, “Software Syn-

thesis and Code Generation for Signal Processing Systems”, Tech.

Report UMIACS-TR-99-57, Institute for Advanced Computer

Studies, University of Maryland, College Park, September, 1999.

[3] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, Software Synthe-

sis from Dataflow Graphs, Kluwer Academic Publishers, 1996.

[4] J. T. Buck, E. A. Lee, “Scheduling Dynamic Dataflow Graphs

with Bounded Memory using the Token Flow Model”, Proc.

ICASSP, April, 1993.

[5] A. Kalavade and P. A. Suhrahmanyam, "Hardware / Software

Partitioning for Multi-function Systems", Proc. International Con-

ference on Computer Aided Design, pp. 516-521, Nov. 1997.

[6] D. Ko and S. S. Bhattacharyya. Modeling of block-based DSP

systems. In Proceedings of the IEEE Workshop on Signal

Processing Systems, pages 381-386, Seoul, Korea, August 2003.

[7] M. Ko, P. K. Murthy, and S. S. Bhattacharyya. Compact proce-

dural implementation in DSP software synthesis through recursive

graph decomposition. In Proceedings of the International Work-

shop on Software and Compilers for Embedded Processors,

Amsterdam, The Netherlands, September 2004.

[8] E.A. Lee, D.G. Messerschmitt, “Static Scheduling of Synchro-

nous Dataflow Programs for Digital Signal Processing”, IEEE

Transactions on Computers, February, 1987.

[9] M. Pankert, O. Mauss, S. Ritz, H. Meyr, “Dynamic Data Flow

and Control Flow in High Level DSP Code Synthesis,” Proceed-

ings of the 1994 IEEE International Conference on Acoustics,

Speech, and Signal Processing, Vol. 2, pp 449-452, Adelaide, Aus-

tralia, April 19-22, 1994.

[10] Stephen Neuendorffer and Edward Lee, “Hierarchical

Reconfiguration of Dataflow Models”, Conference on Formal

Methods and Models for Codesign (MEMOCODE), June 22-25,

2004.

[11] P. Wauters, M. Engels, R. Lauwereins, J.A. Peperstraete,

“Cyclo-dynamic dataflow,”4th EUROMICRO Workshop on Paral-

lel and Distributed Processing, Braga,Portugal, January, 1996.

function {
for each of in

end for
 =

for each in
if(under)

else

end for

return
}
function {

if(>)

else

return
}
function {

//in & out port of

for each in

end for

return
}
function {

for each in
for each in

end for
for each in

end for
end for

 // , each varying and fixed graph.
return

}

scheduleX G

i DGT G
sched i scheduleX i i=

shedG scheduleXDF G
G
DGT

sched i scheduleDGT i=

sched i scheduleX i=

schedG linkSC linkSC shedG sched sched
i

=
schedG

schedulerXDF G
SS ThresholdSS
schedG SASTechnique G=

schedG MASTechnique G=
schedG

scheduleDGT
sched

s
scheduleX s=

setUpPortTransferRate
Cb getParamConfigSets b=

Cb b

b setGraphTopo y Cb b=
sched

b
i scheduleX b=

sched linkSC sched
b

sched
s

=
sched

setGraphTopo y C
determineGvTopo y C

a
pv

o
a

ev connectEdge pv

o
i av=

p
v

in
a

ev ev connectEdge pv

in
i av=

v av ev=

v f= v f

Figure 5. Operational semantics of DGT operating with any type

of dataflow model

. is obtained based on simulationThresholdSS

N m+ m

N

DG SG Frame

Size C1 C2 C3 C4 C5 C6

Code 26,469 31,946 26,469 63,341 79,773 63,341

Buffer 1,557 1,429 1,557 4,667 4,283 4,667

128 *

128

Total 28,026 33,375 28,026 68,008 84,056 68,008

Code 26,469 31,946 26,469 63,341 79,773 63,341

Buffer 6,173 5,661 6,173 18,515 16,979 18,515

256 *

256

Total 32,642 37,607 32,642 81,856 96,752 81,856

Code 26,469 44,903 31,393 63,341 118,645 94,180

Buffer 52,852 19,991 21,788 158,551 59,967 65,364

480 *

720

Total 79,321 64,894 53,181 221,892 178,612 159,544

Code 26,469 58,074 44,564 63,341 158,157 133,692

Buffer 130,680 45,320 49,397 392,035 135,955 148,192

768 *

1024

Total 157,149 103,394 93,961 455,376 294,112 281,884

Code 26,469 58,074 50,041 63,341 158,157 150,124

Buffer 1,817,064 100,940 100,937 5,451,187 302,815 302,524

1080 *

1920

Total 1,843,533 159,014 150,978 5,514,528 460,972 452,648

Table 1. Memory usage comparison

. DG: DGT approach, SG: Separate graph
approach(FSM+SDF), C1: SAS, C2: MAS,
. C3: SAS+MAS, C4: SAS, C5: MAS, C6: SAS+MAS

V - 72

➡ ➠

