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ABSTRACT

Dataflow is widely used for designing DSP applications. Despite 

its intrinsic advantages, one weak point is its difficulty in flexible 

expression of applications with data dependent change in execu-

tion structure. This paper suggests an approach to providing 

dynamically configured dataflow graph topologies using a new 

modeling and synthesis technique called DGT (Dynamic Graph 

Topology). DGT builds on PSDF semantics [1]. All possible graph 

topologies for a given graph are obtained at a compile time and the 

corresponding graph based on parameters and data is dynamically 

set up in an efficient manner at runtime before the invocation of 

the associated graph. Systematic methods for reducing code and 

buffer size are applied based on characteristics of each configured 

graph. We have compared DGT against conventional modeling 

approaches through a detailed case study of an MPEG 2 video 

encoder system, and our experiments demonstrate the efficiency of 

the DGT approach.

1.  RELATED WORK

To handle data driven changes in execution structure, several data-

flow models such as CDDF [11], BDF [4], and BDDF [9], have 

been proposed. CDDF uses control tokens to determine the token 

transfer at an actor port. However, determination by a control 

token is applied to the actor in the next phase of execution, there-

fore, control tokens are not present at the moment that the actual 

phase is determined. BDDF introduces dynamic ports and an 

upper bound is provided for the data rate so that each dynamic port 

can keep the model bounded. However, control flow depends on 

FSMs. Using FSMs for minor changes of control flow with data-

flow graphs can make application models unnecessarily compli-

cated and result in limited flexibility. BDF provides “SWITCH” 

and “SELECT” actors to determine control flow. For satisfying 

bounded memory and consistency, a symbolic function of proba-

bility is introduced. This function increases the complexity of 

solving the balance equations (for verifying sample rate consis-

tency), and results in the possibility of “weak consistency,” which 

is less desirable in an implementation. 

To provide for more powerful and efficient data dependent 
execution related to application mode changes, where entire 
graphs or subsystem are replaced or reconfigured at run time, this 
paper tackles dynamic set-up of dataflow graph topologies before 
the graphs are invoked. All configurations of possible graph topol-
ogies are pre-computed at compile time and stored for usage at run 
time. At runtime, the initialization step of DGT generates an 
appropriate graph topology based on parameters extracted from 
data being delivered and picks up a pre-computed schedule to fit 
the current parameter configuration. However, not all configura-
tions are valid or can be obtained at a compile time. Some configu-
rations may cause deadlock or inconsistency or may not be 
predictable at compile time. Reconfiguration of dataflow graphs is 
carefully considered in [10]. [10] analyzes the reconfiguration of a 

model based on behavioral types and extracts the least change 
context to check approximate semantic constraints. This paper 
statically checks the validity of each configuration like [10] and 
keeps the scheduling results for use at run time. The main distin-
guishing feature of DGT is that it efficiently supports multi-func-
tion applications by configuring graph topologies dynamically. 
There are two kinds of multi-function applications. The first, 
which we call type-I applications, are exclusive-or applications, 
where only one graph topology is selected from multiple sets of 
possible graph topologies for a given application. The other, which 
we call type-II applications, are concurrent applications where two 
or more applications with different graph topologies are running at 
the same time. This paper focuses on type-I (exclusive-or) applica-
tion for experimentation of DGT. For synthesis of type-I applica-
tions, [5] extracted commonality measures of each actor and used 
these values to determine a hardware bias of each actor by hard-
ware oriented partitioning. This paper focuses on software imple-
mentation, and applies novel scheduling techniques based on 
graph characteristics to reduce code and buffer size, which is criti-
cal for DSP software. The DGT approach provides efficiency and 
flexibility in modeling applications with data driven change of 
graph topology from runtime parameter changes by using pre-
computed information (information related to graph topology, 
scheduling, code/buffer size, bounded memory, etc.).

2.  DYNAMIC GRAPH TOPOLOGY

2.1 Brief description of PSDF graphs

PSDF specification  consists of three distinct graphs: 1) the init

graph i; 2) the subinit graph s; and 3) the body graph b. Intu-

itively, the body graph models the main functional behavior of the 

subsystem, whereas the init and subinit graphs control the behav-

ior of the body graph by appropriately configuring the body graph 

parameters. The init graph is invoked prior to each invocation of 

the associated (hierarchical) parent subsystem, , while 

the subinit graph is invoked prior to each invocation of the associ-

ated body subsystem b, thus allowing for two distinct “frequency 

levels” of reconfiguration control.

2.2 DGT (Dynamic Graph Topology) specifications

As applications for embedded systems grow more complicated, 

the requirement of dynamic on/off of actors and ports of actors as 

well as the change of transfer rates(production and consumption 

rates) on dataflow edges is unavoidable. To support dynamic 

change of graph topologies, actors, ports of actors and transfer 

rates should be considered to be adaptable based on the delivered 

data. Dynamic change of a graph topology requires run-time 

scheduling, which potentially causes problems of execution time 

overhead. To alleviate this overhead, this paper provides for 

dynamic change of graph topologies through schedules that are 

pre-computed at a compile time. DGT is based on PSDF semantics 

[1],[6], but is significantly more flexible than PSDF in that it 

allows graph actors and edges to be treated as dynamic parameters 

as well as the more standard types of parameters supported in the 

dynamic reconfiguration capabilities of PSDF. Therefore, in DGT, 

the transfer rate of each port of a graph, itself, is determined by a 
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special subgraph, called the init graph, as in PSDF [1], so that the 

consumption rate and production rate of each port of the graph can 

be determined before the invocation of the associated DGT graph. 

However, in DGT, the subinit graph s controls the behavior of 

the associated body graph by determining the graph topology of 

the associated body graph before the invocation of the body graph. 

The number of possible graph topologies is predicted at a compile 

time.

Figure 1 shows that how a subinit graph can extract appropriate 

header information and set up parameters ( :param) with the 

required information for the associated body graph. An appropri-

ate graph is selected from a set of possible graphs(

by the subinit graph with ( :param). This mechanism is effective 

because many data tokens for modern DSP applications are deliv-

ered as frames with a header part and a payload part. 

Here, we classify actors and ports into two categories based 
on the presence or absence of data driven change of their behav-
iors. Actors and ports that are not changed in a graph topology are 
called fixed actors ( ) and fixed ports ( ), respectively, while 
actors and ports having potential dynamic changes are named as 
varying actors ( ) and varying ports ( ). Here, one point that 
requires careful consideration is that a fixed actor( ) can have a 
varying port ( ) since a fixed actor ( ) can appear with different 
types of ports. The subinit graph s dynamically sets up varying 
actors and varying ports based on data being delivered and pro-
duces an appropriate graph topology for the associated body 
graph. Consistency and bounded memory for each possible set of 
graph topologies are verified at compile time. At runtime, the sub-
init graph s sets up an appropriate graph topology for the associ-
ated body graph and picks up an appropriate pre-computed 
schedule that also contains code and buffer size minimized for the 
configured graph. Code and buffer size minimization is obtained 
by a scheduling technique appropriately chosen depending on 
graph characteristics. In DGT, verification of validity of schedules 
can be performed at a compile time and valid schedules can be 
guaranteed and can be ready to be used at runtime without the 
overhead of dynamic scheduling. At runtime, the subinit graph s
looks up pre-computed schedules in a table with the appropriate 
parameter values.

Figure 2 shows an example of how DGT is applied to config-
ure a body graph. Here,  represents all the possible sets 
of ports to which the  varying output port of the actor  can be 
connected.  represents a counterpart of an input port. 
In figure 2, dotted line represents varying edges while solid lines 
represents fixed edges. Also, a dash filled actor represents a vary-
ing actor while a white blank actor represents a fixed actor. Each 
actor can have varying ports and fixed ports together. The transfer 
rates or connections of varying edges are data dependent while the 
transfer rates and connections of fixed edges are fixed. Varying 
edges and varying actors can be turned on or off based on the data 
tokens delivered. 

The following equation represents a general case where the 
 varying output or input port of the actor  connects to the 

input or output port of another actor  or does not connect to 

anything.

This is an example of the  input port of  in Figure 2.

Here,  means there are no edges from or to the associated port. 

The graph  ( ) is made up of  (a graph with 

varying graph components) and  (a graph with fixed graph 

components). By separating from  parts that are common across 

different subsystems, possible overlapping of resources among dif-

ferent subgraphs can be removed.

2.3 Scheduling of DGT specifications

A DGT subsystem produces various sets of configurations for the 

associated body graph b. For each graph generated, checking of 

both synchrony (synchronous dataflow [8] behavior) for the dura-

tion of the configuration and bounded memory is performed. For 

this purpose, a graph is considered as a general fixed graph after 

the subinit graph configures the graph topology. All of the major 

configurations for the corresponding graph are captured at the 

compilation stage and are kept for use at runtime. The subinit

graph s extracts parameters from the header part of data being 

processed and then sets appropriately the associated body graph 

b. For many applications, such as those involving a few to sev-

eral or even dozens of different modes, the number of combina-

tions of DGT configurations is manageable for reasonable 

implementation platforms. Here, the transfer rate of every port of 

each actor within a body graph under DGT can be changed by the 

associated graph s. 

A useful restriction in the use of DGT is that when a DGT 
graph is embedded within a dataflow model other than DGT or 
PSDF, the transfer rates of interface ports of a DGT graph must 
generally be fixed even though the graph topology inside the DGT 
subsystem can be vary dynamically. This assumption allows DGT 
graphs to be embedded easily in other dataflow models with the 
external appearance of simple SDF actors. Therefore, the transfer 
rates of input/output ports of the DGT graph, itself, should be set 
by the init graph i before the DGT graph is invoked and should 
be kept invariant during the entire iteration of the graph. 

Figure 3 shows an example that illustrates DGT scheduling 
within SDF. The DGT graph  takes two tokens and produces 
two tokens. Therefore, the schedule for Figure 3 will be like 

. However, by looking into the DGT graph , we see 
that the actor  is a varying actor that can be removed by the sub-
init graph s on demand. Also, the transfer rates of actor  are not 
fixed. The actor  has one output port, which is a varying port. 
Therefore, the actor  can be connected to either the actor  or 
the actor . The actor  has one varying input port and one fixed 
output port. The actor  consumes one token either from actor 
or actor  and produces two tokens to a fixed output port. The 

schedule of the DGT graph  can be either  or .
The schedule for the graph  is  and the schedule for 
the graph  is either  or . The schedule for each 
graph is hierarchically maintained in this manner. Here, the two 
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schedules for the graph  are SAS (Single Appearance Sched-
ule)[3] where each actor appears only once. The following section 
shows how different scheduling techniques are applied systemati-
cally based on characteristics of the configured graphs.

2.4 Minimization of code and buffer requirements

According to graph characteristics and the granularity (complex-

ity) of each actor, efficient scheduling considering both code size 

and buffer memory requirements is important when synthesizing 

implementations. Since a DGT system supports runtime adjust-

ment of pre-computed schedules, decisions on the methods for 

minimizing code and buffer requirements can be made statically. 

For an application graph, the ratio of code size vs buffer size as 

well as graph characteristics are important factors to select an 

appropriate technique for efficient minimization of both code and 

buffer size. For example, for an application with a very small code 

size but requiring high buffer size, minimizing code size by SAS 

(Single Appearance Schedule) is not likely to lead to a cost-effec-

tive solution. Instead, a carefully-constructed MAS (Multiple 

Appearance Schedule) is likely to be a better choice due to the 

advantage of further buffer size reduction at the expense of some 

code size increase. In our DGT synthesis approach, for efficient 

multiple appearance schedule generation, we have adapted the 

MAS approach of [7], and for SAS generation, techniques from 

[1], [2] and [3] are applied. For selection between MAS and SAS 

implementation, we have formulated a normalized criterion 

( :Schedule Selector) to determine the most appropriate tech-

nique.

 is the uniformity metric of [7] (explained below) and  is the 

ratio of total code size to the average data frame size obtained 

based on simulation.  and  are user-defined weight values 

and are chosen based on simulation.  is proportional to the num-

ber of edges whose transfer rates are multiples of one another. A 

high value of  reflects potentially low opportunity for buffer size 

reduction using the techniques of [7].  suggests which factor 

between code size and buffer size is more important to reduce the 

overall memory requirements. A graph with a higher  suggests 

that a scheduling technique that is more efficient in reducing code 

size produces a better result rather than a buffer-oriented tech-

nique. Consequentially, a high  value suggests that an SAS is 

appropriate for the graph. 

Figure 4 shows part of an MPEG2 encoder modeled using 
our DGT technique. Some of the actors can operate with different 
parameters and transfer data at rates depending on the graph( ) in 
which the actor is included. Those actors are symbolized as . In 
Figure 4,  represents MC (motion compensators) and  rep-
resents a DCT (Discrete Cosine Transform). In MPEG2, the 
frame requires two MCs and the  frame requires one MC, while 
the  frame does not need a MC. Therefore, three different graph 
topologies are required within the application, and the particular 
topology to use at a given time depends on the picture frame type 
( , , or ).

Each graph topology has different  values depending on 
the characteristics the graph. For G1 of  frame, SAS implemen-
tation is selected, while for G2 of  frame and G3 of  frame, 
MAS implementation is selected. In Figure 4, the behaviors of the 
actor  and the actor  can be changed depending on the 
graph characteristics and the change of parameters, while other 
actors are invariant.
From a DGT representation, we can often reduce code size by 

removing overlapping graph components across graph sets. If 

is the number of common actors in graphs with different configu-

rations, and  is the number of graphs ( ) including the 

common actor ( ).

2.5 Operational semantics of DGT

Figure 5 shows the operational semantics of DGT operating with 

any type of dataflow model. Because of its ability to operate with 

different types of dataflow models, DGT is more accurately char-

acterized as a meta-modeling technique. Each hierarchical actor 

( ) in a DGT system also can be viewed as an independent graph 

and can have its own schedule. In our implementation of DGT, we 

maintain schedules in a hierarchical manner. Therefore a graph 

( ) has the schedule for itself and also maintains schedules for 

each hierarchical actor( ) under the graph ( ). Each hierarchical 

actor  under  also maintains the schedule for itself and sched-

ules for graphs representing every hierarchical actor  inside 

. This way, the schedule for the graph  and schedules for sub 

graphs of s inside  are maintained in a hierarchical way until 

graphs in the lowest level of the hierarchy are scheduled.

The function  is a function to schedule a 
graph . For all general hierarchical actors ( ) inside  except 

s of DGT,  is applied. The function 
is applied for  of DGT within . Then  is applied to 
have the schedule for the graph , itself and schedules for s in 

 kept linked together. The function  in 
 generates the corresponding graph with given 

parameters. Ultimately,  in a  gener-
ates an appropriate schedule based on the graph topology along 
with code and buffer size suitable for each graph. For each config-
ured graph, type checking of the given graph is performed and 
then if  is bigger than  for selecting an schedul-
ing technique, the chosen SAS based technique ( )
is applied. Otherwise, the chosen MAS based technique 
( ) is chosen.

3. EXPERIMENTAL RESULTS

In our experiments, we developed an MPEG2 video encoder as an 

application example. An MPEG2 video encoder has some differ-

ent operational blocks depending on the picture frame, but shares 

most of the blocks across picture frames (I, B or P frame). We 

compared the total memory usage of a DGT graph implementation 

with a conventional separate-graph approach. A separate graph 

approach uses a combination of SDF and FSM. Each SDF graph 

processes a different picture frame. The DGT method selects dif-

ferent scheduling methods (SAS or MAS) depending on graph 

characteristics. For obtaining the code size, we used the Texas 

Instruments Code Composer simulator of the 64XX series proces-

sor. As the frame size increases, the impact of buffer size on total 

memory usage becomes larger than the impact of code size. We 

applied SAS, MAS and a combination of SAS and MAS to each 

case. In C3 and C6, (see Table 1) while SAS is selected for both 

128*128 and 256*256, either SAS or MAS is selected for each 

picture frame (I, B and P) dynamically for a frame larger than 

256*256. This is because a trade-off between code size and buffer 

size exists in the vicinity of 480*720 size. 

Table 1 shows that the DGT approach reduces total memory 
usage from 60% to 67% compared with a separate graph approach 
through shared code and the streamlining of scheduling methods to 
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fit graph characteristics. The runtime overhead for finding a proper 
schedule for each graph topology is only , where 
is the number of varying graph components (varying actors and 
varying edges) and  is the number of possible schedules for each 
DGT graph depending on the topology, which is relatively modest 
compared with the complexity of typical signal/image processing 
actors. 

4.  CONCLUSIONS AND FUTURE WORK

This paper develops efficient support for dynamic graph topolo-

gies for dataflow graphs requiring different execution structures 

based on dynamic parameters, and data being processed. In addi-

tion to providing efficient and flexible support for multiple modes 

of system operation, DGT allows us to reduce overall memory size 

by systematically sharing code and applying tailored scheduling 

methods across the different graph topologies that make up a DGT 

application. Useful directions for future work include integrating 

DGT with other dataflow models as a meta-modeling technique,

and implementation of concurrent applications through DGT 

semantics under resource and performance constraints.
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.  is obtained based on simulationThresholdSS

N m+ m

N

DG SG Frame 

Size C1 C2 C3 C4 C5 C6 

Code 26,469 31,946 26,469 63,341 79,773 63,341 

Buffer 1,557 1,429 1,557 4,667 4,283 4,667 

128 * 

128

Total 28,026 33,375 28,026 68,008 84,056 68,008

Code 26,469 31,946 26,469 63,341 79,773 63,341 

Buffer 6,173 5,661 6,173 18,515 16,979 18,515 

256 * 

256

Total 32,642 37,607 32,642 81,856 96,752 81,856

Code 26,469 44,903 31,393 63,341 118,645 94,180 

Buffer 52,852 19,991 21,788 158,551 59,967 65,364 

480 * 

720

Total 79,321 64,894 53,181 221,892 178,612 159,544 

Code 26,469 58,074 44,564 63,341 158,157 133,692 

Buffer 130,680 45,320 49,397 392,035 135,955 148,192 

768 * 

1024

Total 157,149 103,394 93,961 455,376 294,112 281,884 

Code 26,469 58,074 50,041 63,341 158,157 150,124 

Buffer 1,817,064 100,940 100,937 5,451,187 302,815 302,524 

1080 * 

1920

Total 1,843,533 159,014 150,978 5,514,528 460,972 452,648 

Table 1. Memory usage comparison

. DG: DGT approach, SG: Separate graph 
approach(FSM+SDF), C1: SAS, C2: MAS, 
. C3: SAS+MAS, C4: SAS, C5: MAS, C6: SAS+MAS
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