
RAPID GENERATION OF HARDWARE FUNCTIONALITY IN HETEROGENEOUS

PLATFORMS

Darren Reilly
1
, Roger Woods

1
, John McAllister

1
 and Richard Walke

2

1
School of Electrical and Electronic Engineering, Queen’s University Belfast, UK

E-mail: {darren.reilly, r.woods, jp.mcallister}@ee.qub.ac.uk

2
Real Time Embedded Systems, QinetiQ Ltd., Great Malvern, WORCS, UK

E-mail: walke@signal.qinetiq.com

ABSTRACT

One of the key problems in complex digital system design

is the rapid generation of efficient hardware functionality.

The paper introduces an architecture template for

targeting FPGA implementations as part of a dataflow

based design flow for heterogeneous platforms, thereby

allowing a designer to perform system level optimizations

for consistent FPGA performance. The architecture

provides scalable capabilities in both communications and

processing allowing the core to be scaled to the problem

size. Matrix multiplication is used to demonstrate the

capabilities of this methodology giving speeds ranging

from 121.4MHz to 188.3MHz without optimization.

1. INTRODUCTION

System requirements are becoming very complex due to

silicon technology improvements and user demands and

so there is a growing need to move to a higher level of

abstraction to model system functionality. Implementing

systems on heterogeneous platforms is a difficult and

complex task. Issues to be addressed include effective

system partitioning and communications both of which

can have implications on buffering and communication

needs.

A major collaborative project involving QinetiQ,

BAE Systems and Queen’s University Belfast [1] is

looking at system level design flows for

FPGA/microprocessor based systems. FPGAs are

particularly suited to computationally intensive algorithms

such as matrix multiplication and QR decomposition

because of their ability to realize high levels of parallelism

Dataflow has been chosen as the model of computation

(MOC) to capture system functionality as it has the

capability of describing the functionality of a system

without the need for detailed implementation or timing

detail. It provides a suitable starting point at which these

details can be added through the design flow. A tool

which has been gaining popularity as a means of

performing multi-processor implementations from a

dataflow description is GEDAE [2]. GEDAE’s main

strength lies in partitioning and generating schedules for

multiprocessor platforms but there is no systematic flow

to go from GEDAE into programmable hardware.

Providing this functionality rapidly and efficiently is a

complex and time consuming task.

This paper examines a technique for the rapid

generation of efficient hardware functionality for FPGA

as part of a system level design flow. An architecture

template is proposed that allows high level characteristics

to be captured but which also allow algorithms to be

efficiently implemented. For this reason a counter based

controller has been used which allows recursive

algorithms in the form of a nested loop program (NLP) to

be directly mapped to hardware. Compaan [7] uses this

technique and can be used in conjunction with this

architecture to provide transformations of loops to vary

memory usage in a core.

Architecture templates [8] have been demonstrated

before but they are not suitable for truly high-level

exploration as they operate synchronously and it is very

difficult to utilize these types of structures as synchronous

scheduling of a complete system on heterogeneous

platform is very complex. Fixed architecture templates

have been developed including the Imagine Processor [9]

which is targeted mainly at image processing and the

picoArray [10] which is mainly targeted towards 3G

cellular base stations. However, these templates have

largely pre-fixed architectures whereas the work here

tends to develop the circuit architecture based on the

computational requirements of the algorithm under

consideration thereby providing the best match between

the hardware realization and system functionality.

The paper is structured as follows. In Section 2, we

introduce the basic concepts of dataflow for modeling

V - 650-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

systems and its implementation in hardware. In Section 3,

we look at an example NLP to derive the requirements for

an architecture template which can be used in a system

level flow. Section 4 shows how matrix multiplication

can be mapped to the template in various ways and

Section 5 provides results for the various implementations

in terms of speed and area.

2. DATAFLOW AND HARDWARE MODEL

Dataflow has been generating considerable interest due to

its capabilities in modeling systems at a high level. It

allows the user to capture functionality and provides a

suitable starting point for a system level flow. Dataflow

works on tokens of data which can be single scalars or

multidimensional arrays of data. The dataflow model

consists of actors and infinite queues by which actors

communicate. The actor fires or processes data whenever

its prerequisite conditions have been met, e.g. when all

inputs have at least one token of data. Once fired, the

tokens on the inputs are consumed and tokens produced

on the outputs. An example dataflow graph (Fig. 1) shows

the state of the graph before and after firing.

Proc

Source1

Source2

Sink Fire Proc

Source1

Source2

Sink

= Token

Fig. 1: Dataflow Graph before and after firing

In the example shown only 1 token resides on any input or

output. However, in large and complex systems, multiple

tokens may reside in the queues especially when

increasing overall system performance.

Hardware implementation of dataflow graphs is

illustrated by the generic hardware model in Fig. 2. As

can be seen, it places restrictions on the graph such as

finite queue sizes. The generic hardware model can be

used for all hardware actors in a graph. The purpose of

the controller is to schedule the data in the FIFOs onto the

processor and to also check for firing conditions.

Proc

Source1

Source2

Sink Proc

Controller

Fig. 2: Dataflow Model to Hardware Model

FIFOs normally operate on the basis that when the active

element is read from the FIFO, it is then disregarded.

However this is not sufficient for our hardware model. It

is necessary to provide this ‘normal’ functionality when

handling tokens but tokens can contain multiple elements

of data. Therefore a mechanism is needed to allow

multiple and random access to elements within the active

token in the FIFO before disregarding the complete token

when it is no longer required. This requires extra

functionality within the FIFO so that elements within the

active token can be accessed as dictated by the algorithm

and that the token is only disregarded when the processor

has finished firing. Fig. 3 illustrates how this can be

achieved. This represents some of the detailed challenges

that needs addressed when mapping dataflow to hardware.

Token

Elements
Element

Address

Output

Fig. 3: Token FIFO with Addressable Elements

3. ARCHITECTURE TEMPLATE DERIVATION

Many DSP algorithms are recursive and can be described

in a (nested) for loop structure, such as QR decomposition

and many matrix operations such as matrix multiplication.

This structure can also be implemented in hardware using

counters and suitable control hardware. In the nested loop

example of Fig. 4, the program has been rearranged to

separate the control and processing with a processor

outline identified.

for i=1 to I

 tmp = 2;

 for j=1 to J

 tmp = tmp*i;

 for k=1 to K

Out[i,j] = Inp01[k]+Inp02[i,k] + Inp03[j] + tmp;

for i=1 to I

 for j=1 to J

 for k=1 to K

if j=1 and k=1 then tmp=2;

if k=1 then tmp=tmp*i;

Out[i,j] = Inp01[k]+Inp02[i,k] + Inp03[j] + tmp;

for i=1 to I

 for j=1 to J

 for k=1 to K

Out[i,j] = Proc(Inp01[k],Inp02[i,k],Inp03[j]);

Proc

Inp01

Inp03

OutInp02

k=1 j=1

Fig. 4: Example NLP

To generate the control circuit for this, the for loops are

mapped to cascaded counters which generate the same

sequences as the loops in the program. The upper and

lower counter bounds are the same as those of the for loop

program. This can be seen in Fig. 5.

for i=1 to I

 for j=1 to J

 for k=1 to K Counter k

1 K

Counter j

1 J

Counter i

1 I

Fig. 5: Example Control Generation

From Fig. 4, it can be seen that control signals are

required when k=1 and j=1. The addresses for input and

V - 66

➡ ➡

output memories are generated from the i, j and k

counters. Latencies are inherent in processing and so

control signal delays need to be generated correctly to

allow correct scheduling of data. The control structure

(Fig. 6) simplifies the mapping of loops to the counters.

The processor control signals are generated as needed,

and the addresses generated from the relevant counters.

Each generated signal passes through a parameterisable

delay so that they can be easily balanced against the

operator and memory read latencies.

C
o
u
n

te
rs

S
ig

n
a
l
G

e
n
e
ra

ti
o

n

S
ig

n
a
l
D

e
la

y
sIn

p
u
t

A
d
d
re

s
s
e
s

P
ro

c
e
s
s
o
r

S
ig

n
a
ls

O
u
tp

u
t

A
d
d

re
s
s
e

s

i
j

z

In
p

u
t

A
d
d
re

s
s
e
s

P
ro

c
e
s
s
o
r

S
ig

n
a
ls

O
u
tp

u
t

A
d
d

re
s
s
e

s

Fig. 6: Controller Structure

Given the dataflow model system description, interfaces

need to be well defined and flexible. This is done by

treating data at the token rather than element level and

using a produce/consume mechanism to indicate token

state. As flexibility is also required for data transfer

between actors so that performance can be increased if

necessary, multiple element transfer is supported. By

providing this interface, actors in the dataflow graph can

be mapped to processors generated using this architecture

template. Higher performance levels may be achieved by

increasing the number of processors and communication

bandwidth.

PE

PE

PE PE

PE PE

Operator

Controller

R

R

R

S

S

S

ME

ME

ME

ME

ME

ME

ME = Memory Element

PE = Processing Element

R = Receive Address Generator

S = Send Address Generator

Fig. 7: Proposed Architecture Template

The proposed architecture template (Fig. 7) provides

scaling in both communications and hardware allowing it

to be configured, scaled and refined for efficient use of

resources. System-level characteristics such as an

asynchronous interface are captured which also can be

scaled to the problem size (typically a simple change in

controller counter boundaries which can be made at run-

time). The matrix multiplication algorithm is mapped to

the template architecture in the next section.

4. MATRIX MULTIPLICATION EXAMPLE

The NLP form of the matrix multiplication algorithm is

given in Fig. 8. This also shows how the program is

simplified by extracting the processing details before

further manipulations take place. This simplifies the

mapping process to the controller counters and extracts

control signals required for the processor.

for i=1 to 8

 for j=1 to 8

 for k=1 to 8

 if k=1 then C[i,j] = 0;

 C[i,j] = C[i,j] + A[i,k]*B[k,j];

for i=1 to 8

 for j=1 to 8

 for k=1 to 8

 C[i,j] = Proc(i,j,k);

Fig. 8: Matrix Multiplication Algorithm

From Fig. 8, the code relative to the processor can be

identified and the processor derived as shown in Fig. 9. It

can also be seen that a control signal for the mux is

required which happens when k=0. The for loops in the

algorithm can be emulated by counters with the same

bounds providing the basis for the controller in Fig. 10.

if k=0 then C=0;

C = C + A*B;

× +

0

Fig. 9: Processor Derivation

for i=1 to 8

 for j=1 to 8

 for k=1 to 8

 C[i,j] = Proc1(i,j,k);

Counter k

1 8

Counter j

1 8

Counter i

1 8

Fig. 10: Mapping to counters for 1 processor

Whilst this shows the mapping for one processor, it is

possible to manipulate the loops in the program to extract

extra levels of parallelism (Fig. 11). It is also indicated

how the loops are mapped to the counters which can then

be optimized by removing some of the excess counters,

given that some of them have fixed values and others

realize the same behavior. The addresses for memories

are generated from the counter values. The mux control

signal is generated using a comparator when k = 0.

5. RESULTS

A number of matrix multiplication implementations were

carried out including a small (8x8x8), large (4x512x4)

and an irregular (13x37x16) implementation. The latter is

used to illustrate the flexibility of this approach. Table 1

below shows the circuit speeds and resource usage for

Xilinx Virtex II XCV6000, when mapping to a single

processor. The circuit was synthesized using Synplify Pro

V - 67

➡ ➡

7.2.1 and implemented using Xilinx ISE 6.1. Where no

BlockRAMs were used as the memories required were

small, LUTs were used configured as 16x1 RAMs to

implement the memories.

for i=1 to 8

 for j=1 to 1

 for k=1 to 8

C[i,j] = Proc1(i,j,k);

 for j=2 to 2

 for k=1 to 8

C[i,j] = Proc2(i,j,k);

 : : : : : : :

 : : : : : : :

 for j=8 to 8

 for k=1 to 8

C[i,j] = Proc8(i,j,k);

Counter k

Counter k

Counter k

1 8

1 8

1 8

Counter j

Counter j

Counter j

1 1

2 2

8 8

Counter i

1 8

Counter k

1 8
Counter j

1 1

Counter i

1 8

Counter j

8 8

Counter k

1 8

Counter i

1 8

1 2 8

j

Fig. 11: Mapping to counters for 8 processors

M N P Clk

(MHz)

Matrix

Mults/s

LUTs Block

RAMs

8 8 8 188.3 367,773.44 331 0

13 37 16 135.1 17,550.01 547 3

4 512 4 153.9 18,786.62 355 9

Table 1: Performance Results with 1 processor

M N P Clk

(MHz)

Matrix Mults/s LUTs Block

RAMs

8 8 8 165.0 2,578,125.00 1473 0

13 37 16 121.4 126,195.43 877 3

4 512 4 139.3 13,035.16 1522 9

Table 2: Performance Results with 8 processors

Table 2 show the speed and resource usage when the

circuit was implemented with 8 processors. The largest

LUT usage (1522) represents 2.25% of the FPGA area. It

can be seen from the results that the clock speeds drop

with larger matrices. For (13, 37, 16), the clock frequency

and resource usage is worst due to the extra resources

needed for the irregular conditions. Numbers rounded to a

power of 2 will provide much more efficient results, so it

would be possible to pad out the matrices with zeroes

which whilst wasting clock cycles, will result in a higher

throughput due to the higher clock speed.

Many implementation of matrix multiplication exists

[12], [13], [14] but they are all synchronous and the

communications required for system integration is not

presented. This requires extra area so a direct comparison

is not relevant although clock speeds are of the same

order. Considering that no optimizations have been

carried out, the results indicate that the use of a template

provides a controlled and efficient implementation of

functionality for a dataflow graph.

6. CONCLUSIONS

An architecture template to develop cores from dataflow

descriptions has been presented. It provides a controlled

way of dictating the architecture and therefore a

predetermined performance in terms of area and speed.

Currently a limitation exists in the architecture that only

allow the processors to access one token at the one and

same time. The work will be expanded to address this as it

will have major advantages in load balancing a network.

The flow will also be further enhanced by linking with

tools such as IRIS [11] and Compaan [7] to allow rapid

implementation on FPGA.

7. REFERENCES

[1] J. McAllister, et al. “Design Technologies for DSP

Algorithm Implementation on Heterogeneous Architectures”,

Proc. SPIE Advanced Signal Processing Algorithms, Archs, and

Impl. XIII, vol. 5205, pp. 585-596 August 2003.

[2] W. I. Lundgren, “Out of the Graphical Box – from DSP

Function to Implementation”, IEE FPGA Developers Forum,

London, UK, 21-22 October 2003.

[3] Handel-C: Available at http://www.celoxica.com.

[4] SystemC: Available at http://wwwsystemc.org.

[5] Synopsys CoCentric SystemC Compiler: Available at

http://www.synopsys.com.

[6] Catapult C: Available at http://www.mentor.com.

[7] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere,

“Compaan: Deriving Process Networks from from Matlab for

Embedded Signal Processing Architectures”, In Proc. CODES,

San Diego, CA, USA, May 3-5 2000.

[8] Benkrid K., Crookes D. “From application descriptions to

hardware in Seconds: A logic-based approach to bridging the

Gap”, IEEE Trans. VLSI, vol. 12, no. 4, pp. 420-436, Apr. 2004.

[9] Ujval J. Kapasi, William J. Dally, Scott Rixner, John D.

Owens, Brucek Khailany, “The Imagine Stream Processor”,

Proc. IEEE Int’l Conf. on Computer Design, pp. 282-288,

September 2002.

[10] picoArray: http://www.picochip.com.

[11] D. Trainor, R. F. Woods and J. V. McCanny, “Architectural

Synthesis of Digital Signal Processing Algorithms using IRIS”,

Journal of VLSI Signal Processing, vol. 16, no. 1 pp. 41-56,

May 1997.

[12] Prassana Kumar V. K., Tsai Y.: “On Synthesising Optimal

Family of Linear Systolic Arrays for Matrix Multiplication”,

IEEE Trans. Comput., vol. 40, no. 6, pp. 770-774, June 1991.

[13] I. V. Ramakrishnan an P.J. Varman, “Modular Matrix

Multiplication on a Linear Array”, IEEE Trans. Comput., vol. C-

35, no. 11, pp. 952-958, 1986.

[14] A. Amira, F. Bansaali, “An FPGA Based Parameterisable

System for Matrix Product Implementation”, IEEE Workshop

SIPS, San Diego, California, pp. 75-79, October 2002.

V - 68

➡ ➠

