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ABSTRACT

The design of complex Digital Signal Processing systems implies

to minimize architectural cost and to maximize timing

performances while taking into account communication and

memory accesses constraints for the integration of dedicated

hardware accelerator. Unfortunately, the traditional Matlab/

Simulink design flows gather not very flexible hardware blocs.

In this paper, we present a methodology and a tool that permit

the High-Level Synthesis of DSP applications, under both I/O

timing and memory constraints. Based on formal models and a

generic architecture, this tool helps the designer in finding a

reasonable trade-off between the circuit’s latency and its

architectural complexity. The efficiency of our approach is

demonstrated on the case study of a FFT algorithm.

1. INTRODUCTION

Due to the complexity of today’s digital signal processing (DSP)

applications, designers need a more direct path from the

functionality down to the silicon. Layered design flow and

associated CAD tools to manage DSP system complexity in a

shorten time are thus needed. This led to the development of

environments that can help the designer to explore the design

space thoroughly and to find optimized designs. In this context,

the application design begins by a specification capture of the

desired functionality using Matlab/Simulink tool [4]. The system

designer next selects hardware component from a library

considering constraints criteria e.g. speed, area, or power etc.

Follows an architecture exploration concurrently with

performance analysis. The hardware and software design tasks

then generate respectively an RTL description of hardware blocs

and C/C++ code executed on processors.

In [1], [2], and [3] authors propose approaches that use

Matlab/Simulink/Stateflow tools for the system specification and

that produce a VHDL RTL architecture of the system. Based on

hardware macro generators that use the “generic”/“generate”

mechanisms, the synthesis process can be summarized as a block

instantiation. However, though such components may be

parameterizable, they rely on fixed architectural models with

very restricted customization capabilities. This lack of flexibility

in RTL blocks is especially true for both the communication unit

which I/O data scheduling and/or timing requirements are

defined, and the memory unit which data distribution is set.

Additional communication interface (wrapper) has to be

introduced between two components when I/O data order or I/O

rates are incompatible. Unfortunately, this adaptation increases

the final architecture area and also decreases system

performance. In some cases, the I/O timing requirements can

not be respected due to the wrapper overhead and can cause

the system design to fail. High-Level Synthesis (HLS) can be

used to increase flexibility of hardware components.

SystemC Compiler [5] from Synopsys, and Catapult C from

Mentor Graphics, in addition to the "super state" mode, hence

propose a synthesis mode called "cycle-fixed mode" that

maintains a fixed I/O timing behavior that is exactly the same

before and after synthesis [6]. Communication is specified using

wait statements and is mixed with the signal processing

specification what limits the flexibility of the input behavioral

description. In these two tools, memory accesses are represented

as multi-cycle operations in a Control and Data Flow Graph

(CDFG). Memory vertices are scheduled as operative vertices by

considering conflicts among data accesses. In practice, the

number of nodes in their input specifications must be limited to

obtain a realistic and satisfying architectural solution. This

limitation is mainly due to the complexity of the algorithms that

are used for the scheduling. Several other scheduling techniques

also include memory issues. Among them, [7] and [8] work only

with scalar and try to reduce the memory cost for a given

scheduling. [9] and [10] schedule the memory-accesses but do

not consider the possibility of simultaneous accesses.

In the domain of real-time and data-intensive applications,

processing resources have to deal with ever growing data

streams. The system/architecture design has therefore to focus on

avoiding bottlenecks in the buses and I/O buffers for data-

transfer, reducing the cost of data storage and satisfying strict

timing constraints and high-data rates. The design of such

applications thus needs methodology that relies on (1) constraint

modeling for both I/O timing and internal data memory, (2)

constraint analysis steps for feasibility checking and (3) high-

level synthesis.

In [10] and [12], we proposed a SoC design methodology

based on algorithmic IP core re-using. Based on high-level

synthesis techniques under I/O timing constraints, our approach

aims to optimally synthesize the IP by taking into account the

system integration constraints: the data rate, technology, bus

format, and I/O timing properties specified by timing frames of

transfers. In [13], we introduced a new approach to take into

account the memory architecture and the memory mapping in the

behavioral synthesis of real-time VLSI circuits. We formalized

the memory mapping as a set of constraints for the synthesis, and

defined a Memory Constraint Graph and an accessibility

criterion to be used in the scheduling step. We used a memory-

mapping file to include those memory constraints in our HLS

tool GAUT [14]. In this paper, we propose a design flow based

on formal models that allow high-level synthesis under both

I/O timing and memory constraints for digital signal

processing algorithms. DSP systems designers hence specify

the I/O timing, the computation latency, the memory

distribution and the application’s data rate requirements that

are the constraints used for the synthesis of the hardware

components. This approach can be integrated in the

Matlab/Simulink’s design flow in order to increase the

flexibility of hardware blocs.

This paper is organized as follows: First in section 2 we

formulate the problem of synthesis under I/O timing and memory

constraints. Section 3 presents the main steps of our approach,

and its underlying formal models. In section 4, we demonstrate

the efficiency of our approach with the didactic example of the

Fast Fourier Transform (FFT).
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Fig. 1: (a) Signal Flow Graph SFG, (b) Timing behaviour, (c) Sequential architecture, (d) Parallel architecture

2. PROBLEM FORMULATION

Let us consider a hardware component based on a generic

architecture composed of two main functional units: one memory

unit MU and one processing unit PU. Suppose the computation

processed to be c = (a*var1)+(b*var2) where var1 and var2 are

variables values stored in memory. Fig. 1(a) shows the Signal

Flow Graph (SFG) of this algorithm. This component receives

input data a and b from the environment through bus1 and sends

its result c on bus2. All the data used and produced by the

processing unit are respectively read and writen in a fixed order

sequence S =(a,b,c): i.e. ta<tb< tc. The read sequence of the

internal variable is completely deterministic i.e.: tvar1 < tvar2. with

tvar1 = ta and tvar2 = tb. In this context, a single memory bank is

therefore sufficient to satisfy the I/O timing requirement depicted

in Fig. 1(b) where latency is equal to 2 cycles. Fig. 1 (c) presents

a possible corresponding architecture of the component that

includes 1 multiplier, 1 adder and 5 registers.

Let us now consider the following data transfer sequence

Sbusses = (a | b, c): i.e. ta = tb< tc. If the latency required to

produce the result is long enough (≥ 3 cycles) to allow a

reordering (serialization) of input data a and b, then the

previously designed architecture including one memory bank can

be reused. However, this solution need to design an input

wrapper composed of 1 register, 1 multiplexer and 1controller. If

the required latency is not long enough (i.e. = 2 cycles), the

designer must design a new component including 2 multipliers, 1

adder, 7 registers and 2 memory banks (see Fig. 1(d)). has shown

in this section, designers can use pre-designed component or

macro/generator but it relies on a fixed architectural model with

very restricted customization capabilities that can cause the

system design to fail.

Hence, a new design flow based on synthesis under constraints is

needed to get flexibility and ease the DSP component design.

This includes (1) modeling styles to represent I/O timing and

memory constraints, (2) analysis steps to check the feasibility of

the constraints (3) methods and techniques for optimal synthesis.

3. DESIGN APPROACH OVERVIEW

The input of our HLS tool [14] is an algorithmic description that

specifies the functionality disregarding implementation details.

Fig. 2 presents an example of a FIR16 algorithmic description.

This DSP specification is first compiled in order to obtain an

intermediate representation: the Signal Flow Graph (SFG Fig. 3).

1. tmp := xn * H(N-1);
2. for i in 1 to N-1 loop
3.     tmp := tmp + x(i) * H(N-i-1);
4. end loop;
5. yn <= tmp;

6. for i in N-1 downto 2 loop
7.     x(i) := x(i-1);
8. end loop;
9. x(1) := xn;

Fig. 2: Fir16 algorithm example

3.1. Timing Constraint Graph

In a second step, we generate an Algorithmic Constraint

Graph ACG from the operator latencies and the data

dependencies expressed in the SFG. The latencies of the

operators are assigned to operation vertices of the ACG during

the operator's selection step of the behavioral synthesis flow.

Starting from the system description and its architecture

model, the integrator, for each bus or port that connects the

component to design to others system components, specifies I/O

rates, data sequence orders and transfer timing information. We

defined a formal model named IOCG (IO Constraint Graph) that

supports the expression of integration constraints for each bus

(port) that connects the component to the others in the system.

Finally we generate a Global Constraint Graph (GCG) by

merging the ACG with the IOCG graph. Merging is done by

mapping the vertices and associated constraints of IOCG onto

the input and output vertices set of ACG. A minimum timing

constraint on output vertices (earliest date for data transfer) of

the IOCG are transformed into the GCG in maximum timing

constraints (latest date for data computation/production).

After having described the behavior of the component and

the design constraints in a formal model, we analyze the

feasibility between the application rate and the data

dependencies of the algorithm, in function of the technological

constraints. We analyze the I/O timing specifications according

to the algorithmic ones: we check if the required constraints on

output data are always verified with the behavior specified for

input data. The entry point of the IP core design task is the

global constraint graph GCG.

3.2. Memory Constraint Graph

As outlined in the previous subsection, a Signal Flow Graph

(SFG) is first generated from the algorithmic specification. In

our approach, this SFG is parsed and a memory table is created.

All data vertices are extracted from the SFG to construct the

memory table. The designer can choose the data to be placed in

memory and defines a memory mapping. For every memory in

the memory table, we construct a weighted Memory Constraint

Graph (MCG). It represents conflicts and scheduling possibilities

between all nodes placed in this memory. The MCG is

constructed from the SFG and the memory mapping file. It will

be used during the scheduling step of the synthesis.

Fig. 5(b) shows a MCG for the presented example with one

simple port memory bank. The variable data var2 and var1 are

placed consecutively in one bank. Dotted edges represent

sequential accesses (two adjacent memory addresses) and plain

edges for random accesses (non adjacent addresses).

Further information about the formal models and the memory

design can be found in [10], [12] and [13].
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3.3. Scheduling under I/O and Memory Constraints

The classical “list scheduling” algorithm relies on heuristics in

which ready operations (operations to be scheduled) are listed by

priority order. In our tool, an early scheduling is performed on

the GCG. In this scheduling, the priority function depends on the

mobility criterion. The operation mobility is the difference

between its ASAP and its ALAP. For operations that have the

same mobility, the priority is defined using the operation margin.

Operation margin is defined as the difference, in number of

cycles, between the current cycle and the operation deadline.

Operations are next scheduled and bind to operators (see Fig. 4).

Scheduling_Function
1) Operation_Mobility_computing(GCG)
2) For (time = 0; time < End; time = time + t_cycle)
3)      List = Operation_Priority_listing(GCG)
4)      Ready_Ops = Find_schedulable_operation(List, time)
5)      Binding(Ready_Ops, operators_set, MCG, time)
6) End for

Binding Function
1) While (Ready_Ops!= NULL)
2)   Ops_low_mobility = Get_first(Ready_Ops)
3) if(Op_low_mobility->margin > 0)
4)     If(Find_mem_conflic(MCG, Ops_low_mobility) = FALSE)
5) If(operators_set != NULL)
6)            Ops_Binding(sh_list, operator)
7) else //no opr or mem conflict
8)            Posponed(Ops_low_mobility)
9) else // margin = 0
10)     If(Find_mem_conflic(MCG, Ops_low_mobility) = FALSE)
11)         Operator_cretation()
12)         Ops_Binding(sh_list, operator)
13) else
14) Exit(cycle, operator, operation, memory bank, …)
15) end if
16) End while

Fig. 4: Pseudo code of the scheduling algorithm

An operation can be scheduled if the current cycle is greater than

the ASAP time. Whenever two ready operations need to access

the same resource (this is a so-called resource conflict), the

operation with the lower mobility has the highest priority and is

scheduled. The other is postponed. When the mobility is equal to

zero, one new operator is allocated to this operation. To perform

a scheduling under memory constraint, we introduce memory

access operators and add an accessibility criterion based on the

MCG. A memory has as much access operators as access ports.

The list of ready operations is still organised according to the

mobility criterion, but all the operations that do not match the

accessibility condition are removed from this list. Hence, when

the mobility is equal to zero, the synthesis process exits and the

designer have to target an alternative solution for the component

architecture by reviewing the memory mapping and/or modifying

some communication features.

Our scheduling technique is illustrated in Fig. 5 using the

previously presented example where the timing constraints are

now the following: S =(a|b,c) i.e. ta = tb < tc. The memory table

Fig. 5(a) is extracted from the SFG. The designer has defined

one memory mapping in memory table 1. Internal data var1 and

var2 are respectively placed at address @1 and @0 in the bank0.

Our tool constructs one Memory Constraint Graph MCG (Fig.

5(b)). In addition to the mapping constraint the designer also

specifies two latency Lat1=3 cycles and Lat2=2cycles.

For the memory mapping and latency Lat1, the sequential

access sequence is var2 → var1: it includes one dotted edge

(with weight Wseq) var2 → var1. To deal with the memory bank

access conflicts, we define a table of accesses for each port of a

memory bank. In our example, the table has only one line for the

single memory bank0. The table of memory access has Data_rate

/ Sequential_access_time elements. The value of each element of

the table indicates if a fictive memory access operator is idle or

not at the current time (control step c_step). We use the MCG to

produce a scheduling that permits to access the memory in burst

mode. If two operations have the same priority ( margin = Lat1-

T(+)-T(*) = 1 cycles) and request the same memory bank, the

operation that is scheduled is the operation that involves an

access at an address that follows the preceding access. For

example, multiplication operation (a*var1) and (b*var2) have

the same mobility. At c_step cs_1, they are both executable and

the both operands var1 and var2 are stored in bank0. MCG_1

indicates that the sequence var2 → var1 is shorter than var1 →
var2. We then schedule (b*var2) at c_step cs_1 and (a*var1) at

c_step cs_2 to favour the sequential access (see Fig. 5(c)).

Bank @

Var1 0 1

Var2 0 0

var2var1
*

a

var1

*

b

var2

+ c

Cs_1 Cs_2 Cs_3

(a)Memory Table (b) MCG (c) Scheduling

Fig. 5: Scheduling under I/O timing and latency constraint

For the memory mapping and latency Lat2, multiplication

operation (a*var1) and (b*var2) have the same mobility that is

null. Both operations must then be scheduled in c_step cs_1.

Because of the memory access conflict, there is no solution to

the scheduling problem: the designer has hence to review its

design constraints. He can target an alternative solution by

adding one memory bank or by increasing the latency.

4. EXPERIMENTAL RESULTS

We described in the two previous sections our synthesis design

flow and the scheduling under I/O timing and memory

constraints. We present now the results of synthesis under

constraints obtained using the HLS tool GAUT [14]. The

algorithm used for this experience is a Fast Fourier Transform

(FFT). This FFT reads 128 real input Xr(k) and produces the

V - 63

➡ ➡



output Y(k) composed of two parts: one real Yr(k) and one

imaginary Yi(k). The SFG includes 16897 edges and 8451

vertices. Several syntheses have been realized using a 200MHz

clock frequency and a technological library in which the

multiplier latency is 2 cycles and the latency of the adder and the

subtractor is 1 cycle.

4.1 Synthesis under I/O timing constraints

In this first experiment we synthesized the FFT component under

I/O timing constraints and analyzed the requirements on memory

banks. In order to generate a global constraint graph GCG,

minimum and maximum timing constraints have been introduced

between I/O vertices of the ACG graph using IOCG model. The

FFT latency is defined by a maximum timing constraint between

the first input and the first output vertices. The specified latency

(that is the shortest one according to the data dependencies and

the operator latencies) corresponds to a delay of 261 cycles. The

FFT component is constrained to read one Xr sample and to

produce one Y sample every cycle.

The resulting FFT component contains 20 multipliers, 8 adders

and 10 subtractors (Table 1). 8 memory banks are required for

those I/O timing constraints. However, the internal coefficients

are mapped in a non-linear scheme in memory. A large amount

of memory bank is needed to get enough parallel access

guaranteeing hence the specified latency. Moreover coefficient

can be present in multiple banks what requires the design of a

complex memory unit.

Memory
bank.

Input
busses

Output
busses

Sub. Add. Mult. Latency
(in cycle)

8 1 2 10 8 20 261

Table 1: Synthesis under I/O timing constraints

4.1. Synthesis under memory constraints

In this second experiment we synthesized a FFT component only

under memory constraints. Nevertheless, only the maximal

number of concurrent access to memory banks limits the

minimal latency value. Hence, with a large amount of operators,

a latency equal to the critical path delay of the SFG could be

obtained. For the reason we synthesized the FFT component

with the amount of operators presented in the first experiment.

We then analyzed the requirement on I/O ports and computation

latency. The memory constraints are: 2 memory banks respecting

a simple mapping constraint: the 128 real coefficient Wr in

bank0 and the 128 imaginary coefficient Wi in bank1.

The shortest latency imposed by the memory mapping and the

amount of operators corresponds to a delay of 215 cycles (Table

2) what is shorter that those obtained in the previous experiment.

This architecture requires 36 input busses (ports) and 14 output.

However, a large amount of busses which data orders are not

trivial (non-linear data index progression) is needed. If the

environment required the component to exchange data over few

I/O busses, this requires the design of a communication unit.

This communication unit can add extra latency to serialize data.

Memory
bank.

Input
busses

Output
busses

Sub. Add. Mult. Latency
(in cycle)

2 36 14 10 8 20 215

Table 2: Synthesis under memory constraints

4.3 Synthesis under I/O timing and memory constraints

In this last experiment we synthesized the FFT component under

both I/O timing and memory constraints. We kept the memory

mapping used for the second experiment and founded the

shortest latency that allows to respect the I/O rates defined in the

first experiment. The resulting architecture contains 17

multipliers, 8 adders and 10 subtractors (Table 3). It produces its

first result after 343 cycles.

Memory
bank.

Input
busses

Output
busses

Sub. Add. Mult. Latency
(in cycle)

2 1 1 10 8 17 343

Table 3: Synthesis under I/O timing and memory constraints

Because of both the memory mapping and the I/O constraints,

the latency is greater than in experiment 1 and 2. However, the

architecture complexity is equivalent to the previous ones in

term of amount of operators. Hence, it appears that synthesis

under both I/O timing and memory constraints allows to manage

both the system’s communication and memory, while keeping a

reasonable architecture complexity.

5. CONCLUSION

In this paper, a design methodology for DSP component under

I/O timing and memory constraints is presented. This approach,

that relies on constraints modeling, constraints analysis, and

synthesis, help the designer to efficiently implement complex

applications. Experimental results in the DSP domain show the

interest of the methodology and modeling that allow trade-offs

between the latency, I/O rate and memory mapping.

We are currently working on heuristic rules that could help the

designer in exploring more easily different architectural

solutions, while considering memory mapping and I/O timing

requirements.
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