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ABSTRACT

The implementation of adaptive filters with fixed-point
arithmetic requires to evaluate the computation quality. The
accuracy can be determined by calculating the global quan-
tization noise power in the system output. In this paper, a
new model for evaluating analytically the global noise po-
wer in the APA algorithm is developed. The model is pre-
sented and applied to the NLMS-OCF. The accuracy of our
model is analyzed by experimentations.

1. INTRODUCTION

The aim of adaptive filters is to estimate a sequence of
scalars from an observation sequence filtered by a system
in which coefficients vary. These coefficients converge to-
wards the optimum coefficients which minimize the mean
square error (MSE) between the filtered observation signal
and the desired sequence. This type of filters is used in dif-
ferent fields such as noise cancellation, equalization, linear
prediction and channel estimation. The different algorithms
for adaptive filtering are mainly classified in two types : Re-
cursive Least Square (RLS) and Least Mean Square (LMS).
Nevertheless, the LMS algorithm is the most common used
in embedded real-time applications because its implemen-
tation is more simple than the RLS algorithm. However, the
Affine Projection Algorithms (APA) have been developed
very recently [3] to have a faster convergence compared to
the LMS and to reduce complexity compared to RLS. The
convergence behavior of this algorithm has been studied
in [4] and [5] but no study is available of its fixed-point
implementation. For embedded systems, the use of fixed-
point arithmetic is required because it is less expensive in
terms of cost and power consumption than the floating-
point arithmetic. But, the fixed-point processing introduces
an error called quantization noise. These different quanti-
zation noise sources are propagated in the system and lead
to an output quantization noise. The power of this quanti-
zation noise is determined to compute the signal to quanti-
zation noise ratio (SQNR). The knowledge of the analyti-
cal expression of the SQNR allows to determine the system
fixed-point specification for a given SQNR minimal value.
Some different models have been proposed for the LMS al-
gorithm as in [6] but no model have been proposed for the
APA algorithm.

So, the aim of this paper is to find an analytical expres-
sion of the noise power in the APA algorithm for all types
of quantization (rounding, convergent rounding and trunca-
tion). In convergent rounding, the mean of a noise is equal

to zero which is not valid for quantization by rounding and
truncation [1]. In section 2, the fixed-point APA algorithm
is described and its output is analytically determined in sec-
tion 3. The model developed is applied to the NLMS with
Orthogonal Correction Factors algorithm (NLMS-OCF) in
section 4. To finish, in section 5, the accuracy of the model
is evaluated by simulations.

2. FIXED-POINT IMPLEMENTATION

The infinite precision APA algorithm can be described
as follows

en = yn − X
t
nwn (1)

wn+1 = wn + µXn[Xt
nXn + δIK ]−1

en (2)

where xn represents the N size vector input data [x(n),x(n−
1),...x(n−N+1)]t . Let denote Xn the matrix of K last ob-
servation vectors Xn = [xn,xn−1,...xn−K+1]. Thus Xn is
a NxK matrix. yn and en are K-tap vectors. δ is a constant
used to regularize the matrix Xt

nXn and IK the K size
identity matrix. The fixed-point model of the APA algo-
rithm is represented on figure 1. The noise terms must be
introduced. The regularization term δ is supposed to be a
sum of power of 2. The equations of the APA algorithm
become :

e
′

n = y
′

n − X
′t
n w

′

n − ηn (3)

w
′

n+1 = w
′

n + µX
′

n[X
′t
n X

′

n + δIK ]−1
e
′

n + γn (4)

where the prime refers to quantified data. γn is a N

vector white-noise due to the computation of X ′

n[X
′t
n X ′

n +
δIK ]−1 and e′n, and is the sum of K multiplication noises.
The fixed-point APA is described by the following set of
equations :

X
′

n = Xn + αn (5)

y
′

n = yn + βn (6)

[X
′t
n X

′

n + δIK ]
−1

= [Xt
nXn + δIK ]−1 + νn (7)

w
′

n = wn + ρn (8)

with αn a NxK matrix, βn and ρn a N size vector.
Moreover, νn is a NxK matrix corresponding to the diffe-

rence between [X
′t
n X ′

n]
−1

and [Xt
nXn]

−1. As demonstra-
ted in [2], νn is equal to
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FIG. 1 –. Scheme of the fixed-point APA algorithm

νn = [Xt
nXn + δIK ]

−2
(αt

nXn + X
t
nαn) + υn (9)

where υn is a NxK matrix due to computation of [X
′t
n X ′

n]
−1

and IK the K size identity matrix.

3. NOISE POWER

The aim of this section is the computation of the output
noise power. This power is equal to

E(b2
y) = E((X

′t
n w

′

n + ηn − X
t
nwn)2)

= E((αt
nwn)2) + E((Xt

nρn)2) + E(η2
n)

(10)

3.1. Input noise

The first noise term in equation 10 is given by the pro-
pagation of the input noise αn through the system.

bxn
= α

t
nwn (11)

bxn
is a K-tap vector. Let Bxn

be the correlation ma-
trix of the vector bxn

.

Bxn
= E(bxn

b
t
xn

) (12)

To determine the noise power, the matrix Bxn
is calcu-

lated. With the trace operator properties, the term Tr(AtBA)
is equal to Tr(AAtB).

So, by denoting, Wn = E(wnwt
n) and using the non-

correlation between the coefficient wn and the input noise
αn, the trace of Bxn

is equal to

Tr(Bxn
) = Tr(E(αnα

t
n)Wn) (13)

where E(αnαt
n) is a N size square matrix equal to

E(αnα
t
n) = Kσ

2
αIN + Km

2
α1N (14)

with mα and σ2
α the mean and the variance of αn, and

1N the unitary matrix of size N . Thus, equation (13) be-
comes

Tr(Bxn
) = Kσ

2
αTr(Wn) + Km

2
αTr(1NWn) (15)

Recognizing that, at convergence steady-state wn is equal
to the optimum coefficient vector wopt, we can write Tr(Wn) =
N−1∑
i=0

w2
opti

and Tr(1nWn) = (
N−1∑
i=0

wopti
)2

Thus, the noise term Bxn
can be described as follows

Tr(Bxn
) = Kσ

2
α

N−1∑
i=0

w
2
opti

+ Km
2
α(

N−1∑
i=0

wopti
)2 (16)

3.2. Coefficients noise

The noise due to coefficients corresponding to the se-
cond term of equation (10) is given by

bwn
= X

t
nρn (17)

So the correlation matrix of bwn
is equal to

Bwn
= E(Xt

nρnρ
t
nXn) (18)

The power of this term is the trace of Bwn
which is

equal to

Tr(Bwn
) = Tr(E(XnX

t
n)E(ρnρ

t
n)) (19)

From the equations (1), (3) and (5), the next recursion
can be written

ρn+1 = Fnρn + bn (20)

where

Fn = IN − µXn[Xt
nXn]−1

X
t
n (21)

and

bn = γn︸︷︷︸
b1n

+ µXn[Xt
nXn]−1(βn − ηn)︸ ︷︷ ︸

b2n

+ µαn[Xt
nXn]−1

en︸ ︷︷ ︸
b3n

+µXnνnen︸ ︷︷ ︸
b4n

−µXn[Xt
nXn]−1

α
t
nwn︸ ︷︷ ︸

b5n

(22)

The terms ρn, Fn and bn are considered non-correlated.
Denoting the correlation matrix Pn = E(ρnρt

n), equation
(20) leads to

Pn+1 = PnE(FnF
t
n) + E(bnb

t
n)

+ E(Fn)E(ρn)E(bt
n) + E(bn)E(ρt

n)E(F t
n)

(23)

So, denoting Bn = E(bnbt
n) and, at the steady-state,

P∞ = limn−→∞ Pn

E(XnX
t
n)P∞ = E(XnX

t
n)(IN − E(FnF

t
n))−1[Bn

+ E(FN )(IN − E(FN))−1
E(bn)E(bt

n)

+ E(bn)E(bt
n)(IN − E(FN ))−1

E(FN)]

(24)

Thus, the power of the noise due to coefficients quanti-
zation is obtained by using the trace of equation (24). The
terms E(FnF t

n), E(Fn) and E(XnXt
n) depend on the in-

put signal properties and can be easily obtained by simula-
tion. The other terms can be developed to split them up into
signal and noise terms.
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3.3. Noise due to filter computation

The noise due to filter computation ηn is a K-tap vec-
tor. Its correlation matrix E(ηnηt

n) is given by

E(ηnη
t
n) =

⎛
⎜⎜⎝

m2
η + σ2

η m2
η . . . m2

η

m2
η m2

η + σ2
η . . . m2

η

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m2
η m2

η . . . m2
η + σ2

η

⎞
⎟⎟⎠

where mη is the mean of ηn and σ2
η its variance. The power

of this term is the trace of its correlation matrix

Tr(E(ηnη
t
n)) = K(m2

η + σ
2
η) (25)

3.4. Noise power

Using equations (16), (24) and (25), the global noise
power on the system output is

By = K(σ2
α

N−1∑
i=0

w
2
opti

+ m
2
α(

N−1∑
i=0

wopti
)2 + m

2
η + σ

2
η)

+ Tr(E(XnX
t
n)(IN − E(FnF

t
n))−1[Bn

+ E(FN )(IN − E(FN ))−1
E(bn)E(bt

n)

+ E(bn)E(bt
n)(IN − E(FN))−1

E(FN)])

(26)

To develop totally the terms E(bn), Bn and E(FnFn),
the type of used APA algorithm must be known. Thus, in
the next part, the equation (26) is developed according to
the NLMS-OCF algorithm which can be considered as an
APA algorithm.

4. CASE OF THE NLMS-OCF

The aim of this section is to determine the noise power
in the case of the NLMS-OCF algorithm [4] and to compare
with the NLMS algorithm. The NLMS-OCF algorithm is
an APA algorithm in which the K last observation vectors
are orthogonal. The idea is to simplify the expression of the
noise power in this case. To simplify the expressions, xn is
supposed to have zero-mean.

The term E(Xn(Xt
nXn)−1Xt

n) can be approximated
by

E(Xn(Xt
nXn)−1

X
t
n) ≈

K

N
IN (27)

4.1. Coefficients noise in NLMS-OCF

Each term of the coefficient noise expression presented
in equation (24) can be simplified in the case of NLMS-
OCF

(IN − E(FnF
t
n)) ≈ (2µ − µ

2)
K

N
IN (28)

E(XnX
t
n) ≈ Kσ

2
xIN (29)

(IN − E(Fn)) ≈ µ
K

N
IN (30)

Using equation (24), the noise due to the coefficients
can be written as

Tr(E(XnX
t
n)P∞)

=
Nσ2

x

(2µ − µ2)
[Tr(Bn) + 2

N(1 − µK
N

)

Kµ
Tr(E(bn)E(bt

n))]

(31)

So, the terms Tr(Bn) and Tr(E(bn)E(bt
n)) must be

computed to determine completely the noise due to coeffi-
cients. Denoting Bin

the autocorrelation matrix of each of
the five terms bin

of the expression (22), and supposing that
they are not correlated, the next equality is obtained

Tr(Bn) =

5∑
i=1

Tr(Bin
) (32)

In the following lines, each term Bin
is developed

Tr(B1n
) = Tr(E(γnγ

t
n)) = K

2
Nm

2
γ + KNσ

2
γ (33)

Here, b1 can be considered as a sum of K uncorrela-
ted noises with the same probability density. So, its power
is equal to the power in the case of the NLMS algorithm
multiplied by K.

Tr(B2n
) = µ

2
Tr[((σ2

β + σ
2
η)IN + (m2

β + m
2
η)1N )×

(E(Xn(Xt
nXn)−2

X
t
n))]

= Kµ
2(E(β2) + E(η2))

1

Nφx + N(N − 1)σ4
x

(34)

where φx is the kurtosis of the input signal xn. As for
b1, b2 can be expressed by the sum of K noise terms. Its
power is only composed by its variance because its mean
is equal to 0 since mx = 0. To determine Tr(B3n

), en is
supposed to have zero-mean and a variance ξ.

Tr(B3n
) = µ

2
Tr[(σ2

αIN + m
2
α1N )

(E((Xt
nXn)−1

ene
t
n(Xt

nXn)−1))]

= Kµ
2(σ2

α + m
2
α)

ξ

Nφx + N(N − 1)σ4
x

(35)

b3 is also the sum of K noise terms but with zero-mean
since en has zero-mean. The two other terms B4n

and B5n

can be developed in the same manner. So compared to the
NLMS algorithm, Tr(Bn) is multiplied by K.

To determine completely the coefficients noise in the
NLMS-OCF algorithm, Tr(E(bn)E(bt

n)) must be develo-
ped. The term E(bn) is equal to

E(bn) = [Kmγ ,Kmγ , . . . Kmγ ]t (36)

So the term Tr(E(bn)E(bt
n)) is equal to

Tr(E(bn)E(bt
n)) = NK

2
m

2
γ (37)

This term can also be interpreted as the sum of K noise
sources. But, it is multiplied by K2 since it represents the
square of the mean. Thus, each noise term in the NLMS-
OCF (b1, b2, b3, b4 and b5) is a sum of K terms whereas
in the NLMS they represent only one term. So the power of
the coefficient noise is multiplied by K in the NLMS-OCF.
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4.2. Data noise in the NLMS-OCF

In the NLMS-OCF, as in equation (16), the power of
the data noise is equal to

Tr(E(αnα
t
n)Wn) = Kσ

2
α

N−1∑
i=0

w
2
opti

+Km
2
α(

N−1∑
i=0

wopti
)2

(38)
In the NLMS, the power of the data noise is [6]

Tr(E(αnα
t
n)Wn) = σ

2
α

N−1∑
i=0

w
2
opti

+ m
2
α(

N−1∑
i=0

wopti
)2

(39)
So, in the NLMS-OCF case, the power of data noise is

multiplied by K

4.3. Computation filter noise in the NLMS-OCF

As in equation (25), the power of the computation filter
noise is

Tr(E(ηnη
t
n)) = K(m2

η + σ
2
η) (40)

In the NLMS case, it is equal to [6]

Tr(E(ηnη
t
n)) = m

2
η + σ

2
η (41)

So, in the NLMS-OCF case, the power is multiplied by
K. The global noise power in the NLMS-OCF is equal to
the global noise power in the NLMS algorithm multiplied
by K. So, the NLMS-OCF is a K-NLMS in terms of noise

5. RESULTS

In this part, the quality of this model to estimate E(b2
y)

is evaluated. For these experiments, tests are made for quan-
tization by truncation and by rounding. The relative error
between the noise power obtained with fixed-point simula-
tions and the estimated noise power with our model descri-
bed in equation (26) is computed. The chosen input signal
is an autoregressive process in which the correlation coeffi-
cient β between data input can be fixed between 0 (white-
noise) and 1 (very correlated).

5.1. Results for the APA algorithm in truncation

The figure 2 shows the accuracy of the model for N
between 1 and 20, K between 1 and N and for very cor-
related input data (β = 0.9). This relative error is smaller
than 30% which is a good result since it represents a diffe-
rence of only 2 dB between the output quantization noise
power estimated by simulation and the power given by our
model. So, this new developed model is valid for the case
of quantization by truncation and for very correlated inputs.
For less correlated inputs, good results are also obtained.

5.2. Results for the NLMS-OCF algorithm in rounding

The simulations are made for orthogonal input data in
the case of quantization by rounding and the results are in
figure 3. The parameters are the same as in section 5.1. As
in the truncation quantization case, our model leads to an
accurate estimation of the noise power. The relative error is
smaller than 30%.
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FIG. 2 –. Relative error for very correlated input data with
quantization by truncation
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FIG. 3 –. Relative error for orthogonal input data with quan-
tization by rounding

6. CONCLUSION

In this paper, a model to determine analytically the noise
power output of the APA algorithm is presented. The model
is developed for the general algorithm and after, is simpli-
fied for the NLMS-OCF algorithm. The simulation results
show that our model is accurate. This approach has for main
advantage to be valid for all types of quantization. This me-
thodology, which has been successfully used for LMS and
NLMS algorithms, is spread to APA algorithms. Neverthe-
less, further studies have to be carried out in order to gene-
ralize this approach for all types of systems and particularly,
non-linear systems.
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