
SIMULATION OF DSP ALGORITHMS ON FIXED POINT ARCHITECTURES

K.B. Cullen, G.C.M. Silvestre and N.J. Hurley

Department of Computer Science
University College Dublin – Ireland

Email: {keith, guenole, neil}@ihl.ucd.ie

ABSTRACT

This paper presents software tools to simulate DSP algorithms on
a wide variety of fixed point architectures including microproces-
sors, DSPs and FPGA devices. Existing solutions for evaluating
the signal quality in fixed point algorithms are either unable to deal
with non-linear systems, fail to consider the architectural details of
the target device or do not produce a real output that can be used
in subjective testing. Using example non-linear algorithms it is
shown that architectural details must considered when evaluating
numerical performance.

1. INTRODUCTION

Fixed point DSP devices are preferred over floating point
devices in systems that are constrained by complexity, cost
and power consumption such as mobile phones, personal
digital assistants and wearable computing devices. In gen-
eral a fixed point algorithm implemented on one of these
devices starts life as a high level floating point simulation
model. Converting the simulation model to fixed point arith-
metic and then porting it to a target device is a very time
consuming and difficult process. DSP devices have very
different instruction sets so an implementation on one de-
vice cannot be ported easily to another device if it fails to
achieve sufficient quality. Choosing a target device with an
abundance of resources will exceed the constraints of any
low power, low cost system. For these reasons it is neces-
sary to evaluate a fixed point DSP algorithm to determine
whether implementation on a particular device is feasible,
to select an appropriate target device, to locate stages in the
system where extended precision routines are necessary or
to choose an ideal architecture for an FPGA or ASIC imple-
mentation.

There are analytical methods available to estimate the
mean and variance for the fixed point error in linear DSP
algorithms and these have been successfully applied to the
analysis of FFTs, DCTs, FIR filters ...etc [1] [2]. However
most real systems contain non-linear modules. Other an-
alytical methods such as affine arithmetic can be used to
evaluate non-linear algorithms but the fixed point error is es-
timated in terms of upper and lower bounds which convey

even less information than mean and variance. Analytical
methods are not suitable for evaluating perceptual systems
where signal quality can only be measured using subjective
tests involving an actual output signal. The simulation tools
currently available [3][4][5] can be used to measure fixed
point error directly. These tools require interaction with the
user to determine binary point locations and do not take the
architectural details of the target device into consideration.

The software tools presented in this paper were designed
to address all of these problems. They operate in three
phases. In the conversion phase a C/C++ floating point algo-
rithm is automatically transformed into a fixed point simu-
lation model. During the optimization phase the number of
scaling operations required to implemented the algorithm
is minimized without reducing the signal quality. Finally,
in the simulation phase, which is the focus of this paper,
the simulation model produces a bit-exact output for a user
specified fixed point architecture.

The rest of this paper is organized as follows: section 2
presents the simulation tools, section 3 describes the user in-
terface and section 4 presents an evaluation using minimax
polynomials and the MPEG psychoacoustic model II.

2. FIXED POINT SIMULATION TOOLS

The software tools are implemented as a C++ class hierar-
chy. The lowest level of the hierarchy, the Integer class,
deals with 2’s compliment binary pattern operations. Ar-
bitrary precision arithmetic is used to overcome the limi-
tations of the host machine running the simulation so that
objects of any size can be created, added, multiplied ...etc.
Each overloaded operator determines the correct word length
to use for the output so that no data is lost. This means that
in an arithmetic expression the word lengths of the inter-
mediate results get larger and larger as more operations are
performed until an assignment operator is encountered. The
next layer is the fixed point class, Fixed, which is a com-
posite of the Integer class. It stores binary point informa-
tion and implements the scaling operations required in fixed
point arithmetic due to differences in binary point locations.
These two layers conform to the SystemC standard [3]. The

V - 490-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

third layer in the hierarchy, the ArchFixed class, deals with
the architectural details of the target device. Instead of al-
lowing the word lengths of intermediate results to get larger
and larger the data is processed by a configurable architec-
ture that constrains the word lengths of intermediate results
according to the size of the data-bus, accumulator, multi-
plier input ...etc and applies rounding and limiting at the
appropriate stages. The architecture can be configured to
emulate various existing and conceptual devices simply by
changing parameter values.

2.1. Configurable Fixed Point Architecture Model

Limiter P

ALU

Accumulator A

Shifter A

w

w

w aw a

m

Databus(w)

w a

Limiter A

Rounding A

a

w a

w a

w a

Limiter B
Mandatory
Optional

Accumulator B

w a

w m

Memory

w m

m

w a

Rounding P

Shifter P

2 w i

2 w i

Multiplier

iw w i

Fig. 1. Configurable Fixed Point Architecture Model. At points
where a reduction in word length may occur, such as the connec-
tion between the wm-bit databus and the wi-bit multiplier input,
the least significant bits are discarded.

The architecture model, shown in Fig. 1, was developed
by comparing the major DSP and microprocessor devices to
identify the important architectural differences. It consists
of mandatory and optional components and is governed by
three word length parameters wm, wa and wi which are the
memory, accumulator and multiplier input word lengths re-
spectively. The parameter values and optional components
for some example platforms are shown in Table 1.

The architecture model is only concerned with numer-
ical details. There will be some structural differences be-

Table 1. Parameter values and optional components - Round-
ing A (RA), Limiter A (LA), Limiter B (LB), Shifter P (SP),
Rounding P (RP) and Limiter P (LP) for some example platforms.

wm wa wi RA LA LB SP RP LP

TMS320C5x 16 32 16 *

ADSP-BF5xx 16 40 16 * *

DSP56xxx 24 56 24 * *

ARM9 32 32 16

ARM9 † 32 64 32 * *

ARM9 ‡ 32 32 32 * * *

FPGA ∗ 32 32 32 *
† with routines for double precision arithmetic, rounding and limiting
‡ with double precision multiplication routine including rounding and
limiting and single precision addition
∗ this is just one possible FPGA architecture

tween the model and the target devices it can emulate. For
example, in DSP devices the output of the multiplier is nor-
mally connected to the input of the ALU but this arrange-
ment does not affect the numerical result. Another example
is the two accumulators which ensure that the scaling op-
erations required in fixed point arithmetic are performed on
wa-bit values at all times. This is important if its neces-
sary to shift both operands before an ALU operation. The
TMS320C5x and DSP56xxx have two accumulators, inte-
ger processors can use any memory location as a second ac-
cumulator since the memory and accumulator word lengths
are the same size on these devices and the ADSP-BF5xx de-
vices have data registers that can serve as accumulators for
scaling operations.

The architecture model represents the combined soft-
ware/hardware operations used to carry out fixed point oper-
ations. For instance integer processors like the ARM9 need
extra code to adapt the hardware to fixed point processing.
On these devices the multiplier doesn’t calculate the higher
order bits in the product. To prevent overflow in fixed point
multiplication word length reduction is required on the mul-
tiplier inputs. On a real device this involves reading a value
into the accumulator, right shifting and writing the reduced
value back to memory so it can be read back in. In the archi-
tecture model this is represented by the connection between
the wm-bits of the databus and the wi-bits at each input to
the multiplier. The architecture model can also represent
software routines on the target device for double precision
multiplication, addition ...etc, since these algorithms simply
emulate more powerful devices.

The architecture model is embedded into the overloaded
operators of the ArchFixed class using objects of type Fixed
to represent registers and busses. The multiplication opera-
tor, for example, reduces the two inputs to wi-bits, performs

V - 50

➡ ➡

the multiplication, shifts the product according to the binary
point locations of the inputs and output, performs rounding
and limiting if enabled and returns the wa-bit result.

2.2. Maintaining Binary Point Information

With operator overloading the expression z = x * y + w

will pass the variables x and y to the multiplication oper-
ator described above. To complete this operation the binary
point locations for the inputs and the output are required
however the multiplication operator has no knowledge of
the output variable. To solve this problem a new system for
maintaining binary point information was developed. Each
variable in the algorithm is given a unique identifier con-
structed from its name and the function its defined in. This
identifier is used to access a centrally stored table of binary
point locations. The identifier for the output of any opera-
tor is determined from the identifiers of the inputs and the
operator involved. If x, y and w have the identifiers "f:x",
"f:y" and "f:w" respectively then the binary point loca-
tion for the product is stored in the binary point table un-
der the identifier "(f:x)*(f:y)" and the output of the ad-
dition has the identifer "((f:x)*(f:y)) + (f:w)". The
overloaded operators can find the binary point location for
the output variable simply by looking at the input variables.
The table is stored in a text file so that binary point informa-
tion can be entered manually by the user or by an automated
conversion process. This system is described in more detail
in [6].

3. USER INTERFACE

Starting with a C/C++ floating point algorithm the first step
in creating a simulation model is to run the source code for-
matter. It changes variable definitions from floating point to
ArchFixed and gives each variable its unique identifier. No
structural changes are made to the algorithm so the source
code remains human readable. During the conversion phase,
which is presented in [6], the simulation model is executed
using sample input signals and the binary point locations
are automatically adjusted to find optimum values. During
the simulation phase the architecture model uses the binary
point locations, which now remain constant, to determine
the correct scaling (shift) operations to use at every stage in
the algorithm.

The word length parameters and the status of the op-
tional components in the configurable architecture are set
using function calls. At any point in the source code these
values can be changed to simulate an algorithm that uses
double precision arithmetic in specific parts or to simulate
an algorithm partitioned across multiple devices.

4. EVALUATION

Simulation models for some example non-linear DSP algo-
rithms were created to illustrate the capabilities of the tools.
These algorithms were implemented on an ARM922T proces-
sor and an XCV1000 FPGA to confirm that the simulation
results are bit-exact.

4.1. Minimax Polynomial

Minimax polynomials are often used to approximate func-
tions like cosine, tangent, logarithm ...etc. These polyno-
mials have the property that the maximum value of the ap-
proximation error is minimized. For example the 3rd degree
minimax polynomial approximation to cos(x), 0 ≤ x <
π/2 is the expression y = ((c3 * x + c2) * x + c1) * x

+ c0 where the coefficients, cn, can be obtained using the
Remez-exchange algorithm.

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

Polynomial Degree

S
N

R
 (

dB
)

<24, 24, 24>
<24, 48, 24>
<24, 24, 12>

Fig. 2. Signal-to-Noise Ratio (dB) vs polynomial degree for a
fixed point minimax approximation of cos(x), 0 ≤ x < π/2 with
different parameter values < wm, wa, wi >.

Fig. 2 shows the Signal-to-Noise Ratio (SNR) for the
minimax cosine approximation with polynomial degree on
the abscissa and different values assigned to the parameters
< wm, wa, wi >. Each polynomial degree is implemented
as a separate algorithm. The curves shown represent a 24-bit
FPGA implementation (< 24, 24, 24 >), a 24-bit DSP de-
vice implementation (< 24, 48, 24 >) and a 24-bit integer
microprocessor implementation (< 24, 24, 12 >). For the
7th degree polynomial the difference in SNR between the
DSP and FPGA implementations is 11.26 dB. The differ-
ence between the DSP and integer microprocessor versions
is 72.24 dB. All of the curves reach a maximum value of
SNR that cannot be exceeded. This is due to the interaction
between approximation and fixed point error which is dis-
cussed in [7]. This example illustrates the point that even

V - 51

➡ ➡

for an algorithm with a small number of operations archi-
tectural details have a significant effect on fixed point error.

4.2. MPEG psychoacoustic Model II

The MPEG psychoacoustic model II is used in both MP3
and AAC. Its objective is to compute a masking thresh-
old for every frame of input audio data (typically 256 to
2048 samples) which describes the minimum level of noise
that will be inaudible to human listeners as a function of
frequency. It was chosen as a case study to evaluate the
tools because it is a non-linear algorithm with large dy-
namic range and is very difficult to implement in fixed point
arithmetic. This algorithm was implemented exactly as de-
scribed in the MPEG-2 AAC specification [8].

Table 2. Signal-to-Noise Ratios (dB) for the masking curves pro-
duced by different devices when compared to the floating point
implementation.

Configuration SNR (dB)

TMS320C5x -7.06

TMS320C5x † 11.57

ADSP-BF5xx -6.30

DSP56xxx 11.55

ARM9 -7.03

ARM9 † 11.57

† with double precision arithmetic

Using real audio data the masking curves produced by
the fixed point and floating point versions were compared
using signal-to-noise ratio. The device configurations and
results are given in Table 2. The 32-bit ARM9 produces
very poor quality which is comparable to that of the 16-bit
TMS320C5x and ADSP-BF5xx devices. The 24-bit
DSP56xxx produces much better results. Even with dou-
ble precision arithmetic the TMS320C5x and ARM9 can-
not improve on the DSP56xxx. Since a masking threshold
is an approximation of human auditory perception the out-
put of these simulations can also be used in subjective tests
involving human listeners.

4.3. MPEG-2 AAC Encoder

The tools were used to create a simulation model of an in-
dependently developed MPEG-2 AAC stereo encoder [9].
The algorithm was then ported to a 32-bit ARM9 processor
and part of the system was ported to an FPGA device [10].
The simulation model was used to determine the ideal ar-
chitecture for the FPGA version and to establish the need
for double precision arithmetic in the ARM version.

5. CONCLUSION

This paper has presented software tools to evaluate the nu-
merical performance of fixed point DSP algorithms. The
tools are unique in their ability to emulate specific fixed
point architectures. The examples given in this paper have
shown that the accuracy of a DSP algorithm implementation
is not obvious from the single word length (16, 24, 32) used
to categorize fixed point devices. It has also been shown that
in some situations an increase in device complexity does not
lead to an increase in signal quality. The advantage with us-
ing these tools is that several different implementations of a
DSP algorithm can be explored quickly using a single sim-
ulation model so that the complexity, cost and power con-
sumption of the final system are kept to a minimum.

6. REFERENCES

[1] Casper W. Barnes, Boi N. Tran and Shu H. Leung, “On the
Statistics of Fixed-Point Roundoff Error,” in IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, Jun. 1985.

[2] Il Dong Yun and Sang Uk Lee, “On the Fixed-Point-Error
Analysis of Several Fast DCT Algorithms,” in IEEE Trans-
actions on Circuits and Systems for Video Technology, Feb.
1993.

[3] The Open SystemC Initiative, “SystemC Version 2.0 User’s
guide,” http://www.systemc.org, 2002.

[4] Seehyun Kim, Ki-Il Kum and Wonyong Sung, “Fixed-Point
Optimization Utility for C and C++ Based Digital Signal
Processing Programs,” in IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, Nov. 1998.

[5] Markus Willems, Volker Bürsgens, Holger Keding, Thorsten
Grötker and Heinrich Meyr, “System Level Fixed-Point De-
sign Based on an Interpolative Approach,” in Proc. 34th De-
sign Automation Conference, Jun. 1997.

[6] K.B. Cullen, G.C.M. Silvestre and N.J. Hurley, “Simulation
Tools for Fixed Point DSP Algorithms and Architectures,” in
Proc. International Conference on Signal Processing, Dec.
2004.

[7] K.B. Cullen, A. Guérin, N.J. Hurley and G.C.M Silvestre,
“Evaluation of Fixed Point Elementary Functions for FPGA
Audio Perceptual Coding,” in Proc. Irish Signals and Systems
Conference, Jul. 2003.

[8] ISO/IEC, 13818-7, “Information technology – Generic coding
of moving pictures and associated audio – Part 7: Advanced
audio coding (AAC),” 1997.

[9] K.B. Cullen, N.J. Hurley, G.C.M Silvestre, “Scalable Archi-
tecture for MPEG-2 AAC Encoders,” in Proc. Irish Signals
and Systems Conference, Jun. 2002.

[10] A. Guérin, K.B. Cullen, N.J. Hurley and G.C.M Silvestre,
“FPGA Implementation of the MPEG-2 AAC Filter Bank,” in
Proc. Irish Signals and Systems Conference, Jul. 2004.

V - 52

➡ ➠

