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ABSTRACT

This paper proposes two novel parallel-pipelined FFT architec-
tures based on multiplier-less implementation targeting wireless
communication applications, such as IEEE 802.11 wireless base-
band chip and MC-CDMA receiver. The proposed parallel-
pipelined architectures have the advantages of high throughput and
high power efficiency. The multiplier-less architecture uses shift
and addition operations to realize complex multiplications. By
combining a new commutator architecture, and a low power butter-
fly with this approach, the resulting power and area savings are up
to 31% and 20% respectively, for 64-point and 16-point FFTs, as
compared to parallel-pipelined FFTs based on Booth coded Wal-
lace tree multipliers.

1. INTRODUCTION

The FFT processor is widely used in DSP and communication ap-
plications. It is a critical block in OFDM based communication
systems, such as WLAN (IEEE 802.11) and MC-CDMA receiver.
Recently, both high data processing and high power efficiency as-
sumes more and more importance in wireless systems. Due to
the nature of non-stop processing at the sample rate, the pipelined
FFT appears to be the leading architecture for high performance
applications. However, only one processor element (PE) in each
column makes a bottleneck on the throughput of pipelined FFTs.
For example, for N-point radix-4 FFT, the radix-4 PE, consisting
of a radix-4 butterfly element and a complex multiplier, has to cal-
culate N/4 times to complete all computation in one stage.

For recent wireless systems, such as IEEE 802.11a provid-
ing 54Mbps data rate, increased throughput requires further par-
allelization. It means more than one PE need to be assigned per
column to the FFT. Parallel-pipelined FFTs are suitable for both
high throughput and high power efficiency. In parallel-pipelined
architectures, only hardware cost for PEs will be increased, the ac-
tual size of the FIFOs between stages usually remains constant for
a given FFT sized N . With the increase of the FFT size, the area of
FFT processor will be dominated by the FIFOs. Hence, parallel-
pipelined FFTs have not significant area overhead, compared to
pipelined FFT [1]. For a given throughput, parallel-pipelined FFTs
can operate at lower frequency than pipelined FFTs, therefore re-
sulting in lower power consumption. Not many researchers have
explored the scope of parallel-pipelined FFTs. In [2], the perfect
shuffle matrix is decomposed into the product of several matrices
and a memory grouping, switching can be reduced from M2 to
2M , where M is the number of PEs allocated per column. For
low power FFTs, a lot of work has been done such as [3, 4, 5, 6].
In [6], we proposed a multiplier-less architecture to replace the
conventional complex multiplier in pipelined FFTs. Both area and
power consumption for the multiplier unit are reduced. This paper
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Fig. 1. N-point radix-4 pipelined FFT processor architecture
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tecture

explores a parallel-pipelined architecture with 4 radix-4 PEs in a
column for 64-point FFT and a parallel-pipelined architecture with
2 radix-4 PEs in a column for 16-point FFT. The complex multi-
plication in parallel-pipelined FFTs is replaced by the minimum
number of shift and addition operations based on common subex-
pression sharing across coefficients. Through different combina-
tions of hybrid low power approaches, a number of designs have
been successfully implemented, with up to 31% power saving and
20% area saving.

2. PARALLEL-PIPELINED ARCHITECTURES

The DFT of N complex data points x(n) is defined by

X(k) =

N−1∑

n=0

x(n)W nk
N , k = 0, 1, ..., N − 1 (1)

where WN = e−j2π/N . WN is twiddle factor or coefficient. The
FFT is the speed-up algorithm of DFT. For example, a N-point
radix-4 pipelined FFT processor is shown in Fig.1. We explore to
allocate two radix-4 PEs in each stage of the 16-point pipelined
FFT. The structure is shown in Fig.2, namely 2-parallel-pipelined
FFT. It can achieve double throughput, compared to the pipelined
FFT at the same operation frequency. As shown in Fig.2, the input
data are separated into two streams. Two commutators in stage1,
each has half storage units of the commutator in pipelined FFTs,
transform odd and even sequential input data to parallel data re-
spectively. The coefficients are divided into two responding sec-
tions, in terms of even and odd. Two coefficient sections are fed
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into two complex multipliers, respectively. Due to the separate
processing on odd and even data, a shuffle unit is needed in stage2
to implement the intersatge data shuffle. The shuffle unit is com-
posed of two triple port SRAMs, each sized 4 words, and a ad-
dressing control unit. The 4 outputs from two triple port SRAMs
are fed into each simplified butterfly unit. Each simplified butterfly
unit only yields the half of all outputs.

For 64-point pipelined FFT, we employ four radix-4 PEs in
each stage. The block diagram of the architecture is depicted in
Fig.3, termed as 4-parallel-pipelined FFT. The architecture can
achieve four times throughput, compared to the pipelined FFT.
The input data are separated into four streams. There are four
commutators in stage1 and stage2, respectively. Each of them has
1/4 size of the commutators in pipelined FFTs and implements the
transform from sequential data to parallel data. The coefficients in
each stage are divided into four sections, responding to four input
streams. Only 3 complex multipliers are used in stage2, because
the output of butterfly1 in stage2 is multiplied by stage 2’s coef-
ficient1, which only contains (7fff,0000). In this architecture, the
number of PEs per column is same as the radix, hence, no shuffle
units is needed in stage3. The multipliers’ outputs in stage2 are
fed into each of 4 simplified butterfly elements as shown in Fig.3.
Each simplified butterfly element only yields 1/4 of all outputs.

3. LOW POWER TECHNIQUES

3.1. Multiplier-less architecture in parallel-pipelined FFTs

The multiplier-less architecture proposed in [6] can also be
employed in parallel-pipelined FFTs. Taking 64-point FFT as
an example, the number of coefficients for the second stage is
16. The coefficients are partitioned into 4 sections, each having
4 coefficients. Three of these sections are fed into 3 complex
multiplier units respectively, since the other section only consists
of 7fff0000. These coefficients are shown in Table 1. Among
them, the trivial coefficients are (7fff,0000) and (0000,8000),
which are the quantized 16-bit two’s complement representation
for (1,0) and (0,-1) respectively. In each set, two entries cor-
respond to the cosine function (the real part, Wr) and the sine
function (the imaginary part, Wi), respectively. For (7fff,0000)
and (0000,8000), the complex multiplication is not necessary.
Data can directly pass through the multiplier unit without any mul-
tiplication, when multiplied with (7fff,0000). Only an additional

Table 1. The coefficients for the second stage of 64-point 4-
parallel-pipelined FFT

Multiplier 1 Multiplier 2 Multiplier 3
7fff,0000 7fff,0000 7fff,0000
7641,cf04 5a82,a57d 30fb,89be
5a82,a57d 0000,8000 a57d,a57d
30fb,89be a57d,a57d 89be,30fb

unit, which swaps the real and imaginary parts of input data, and
inverts the imaginary part, is needed for those data by (0000,8000)
in multiplier unit2 [6]. For multiplier1, the rest of the coefficients
are composed of only 6 constants (7641, 5a82, 30fb, a57d, 89be,
cf04). However, one can see that only 3 of these constants (7641,
5a82 and 30fb) would be enough to implement all coefficients.
For example, a multiplication by a57d could be realized by first
multiplying the data with 5a83, and then two’s complementing
the result. Note that a multiplication by 5a82 already exists.
Therefore, the multiplication with 5a83 can simply be obtained by
adding the data to the already existing multiplication with 5a82.
The other two constants (89be and cf04) can be realized in a
similar manner, using constants 7641 and 30fb respectively. 5a82
is represented by two’s complement format, 7641 and 30fb are
represented by Canonical Signed-Digit (CSD) format as follow:
5a82 (0101101010000010), 7641 (1000 − 10 − 1001000001)
and 30fb (010 − 1000100000 − 10 − 1). The mixed use of
Canonical Signed-Digit (CSD) and two’s complement is for
minimizing the number of addition/shift operations. According
to the above representation, the required operations for the direct
computation of the nontrivial complex multiplications for the
three constants, are shown in Table 2.

Table 2. The operations required before common subexpression
operation 5a82X 7641X 30fbX
addition 5 2 2

subtraction 0 2 3
shift 6 4 4

However, if pre-computing 5X = X + X << 2 and 65X =
X + X << 6, the multiplications can be written as follow:
5a82X = 5X << 12 + 5X << 9 + 65X << 1
7641X = X << 15 + 65X << −5X << 9
30fbX = 65X << 8 − X << 12 − 5X
The common subexpressions are 101 (5) and 1000001 (65). The
pre-computation requires 2 additions and 2 shifts. The results of
the pre-computation can be used for both the multiplication with
real part (Wr) and the multiplication with imaginary part (Wi) of
nontrivial coefficients. After the pre-computation, the operations
required for the computations are shown in Table 3. As can be
seen, the number of operations is significantly reduced, after the
pre-computation.

Fig.4 shows the shift-and-addition module for the three con-
stants in the multiplier-less1 architecture which replaces the multi-
plier1. The module carries out the multiplications in which the real
part (Xr) or imaginary part (Xi) of input data will be multiplied
with Wr and Wi respectively. Firstly the input data are fed into the
common subexpression block. The signal s1 indicates which con-
stant channels will be chosen for processing the input data. Each
channel carries out shift, negation and addition for the constant.

Table 3. The operations required after common subexpression
operation 5a82X 7641X 30fbX
addition 2 1 0

subtraction 0 1 2
shift 3 3 2
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Fig. 4. Block diagram of the shift-and-addition module in
multiplier-less1 unit of 64-point 4-parallel-pipeline FFT
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Fig. 5. Block diagram of the multiplier-less1 unit in 64-point 4-
parallel-pipeline FFT

The control signal s2 indicates that the constant 7641 block outputs
the product by either 7641 or 7642. Similarly, the signal s3 con-
trols the output of constant 30fb block. The constant 5a82 block
provides two products, 5a82X and a57dX. The invert units either
invert the outputs of the constant units or pass them without any
change. The swap unit provides the appropriate swapping for in-
put data, depending on whether the coefficient is (30fb,89be) or
(7641,cf04). The output switch unit judges which couple of prod-
ucts are final outputs. The block diagram of the multiplier-less1
unit is depicted in Fig.5. Only those data, which multiply nontriv-
ial complex coefficients, are fed into the shift-and-addition units,
under the control of s5. Two shift-and-addition units are needed
for the real part (Xr) and imaginary part (Xi) respectively. In
the multiplier-less1 unit, 22 adders are used to substitute the four
real multipliers in the complex multiplier unit. ROM unit storing
coefficients is replaced by a FSM unit generating control signals
(s1 - s5) in multiplier-less approach. Based on the above discus-
sion, multiplier2 and multiplier3 can also be replaced by similar
multiplier-less units. For multiplier3, three constants are used as
shown in Table 1. The structure of multiplier-less3 is similar to
those in Fig.4 and Fig.5. However, no inverter units are needed
in shift-add modules and an additional controllable swap unit. In
total, 20 adders are employed in this multiplier-less3 unit. For
multiplier2, only the constant channel 5a82 is retained to process
input data. This multiplier-less2 only contains 10 adders. Similar
multiplier-less architectures can be applied to 16-point FFT and
stage1’s multiplier1 of 64-point FFT.

3.2. Low power commutator architecture

The commutator unit is one of the main power-consuming com-
ponents in pipelined FFTs. Previous approaches to implement
commutators include shift register (SR) [7], conventional dual
port RAM architecture (DR) [8], and triple port RAM architec-
ture (TR) [8]. In this paper, we employ a new architecture based
on dual port RAMs, termed as IDR. The block diagram of IDR is
depicted in Fig.6. IDR efficiently reduces the switching activity
through maintaining the unused outputs of RAMs at their previ-
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Fig. 7. Block diagram of the low power butterfly architecture

ous values. IDR also reduces the number of write operations to
memory blocks with new interconnection topology. Table 4 illus-
trates which RAMs are enabled for write operation during each
period. mt is the butterfly operation factor for staget. In radix-4
FFT, 0 < mt < 3. It can be seen from Table 4, in IDR architec-
ture, each RAM block is enabled 5/3 times on average. Whereas,
for DR and TR, each RAM block is enabled 4 and 10/3 times re-
spectively [8]. Hence, our architecture is significantly more power
efficient than both DR and TR, due to reduced memory access.

Table 4. Rams selected in different periods
mt 0 1 2 3

RAMs DM1 DM0, DM2 DM1, DM3 DM0
selected DM3 DM4 DM5 DM2

3.3. Low Power Butterfly

The conventional butterfly architecture consists of 6
adder/subtracters. In this paper, we proposed a low power
butterfly architecture which employs two 5-input summation
blocks to replace six adder/subtracters. Fig.7 shows the low power
butterfly architecture (LB). Inverters (CI1 to CI6) are used to gen-
erate the normal or the one’s complement form under the control
of C5, C6 and C7. The signal C4 controls the four multiplexers
(M1 to M4) for directing appropriate data to the inputs of the
summation blocks. Two 5-input summation blocks (SUM0 and
SUM1) are employed to generate the real and imaginary parts
of the output respectively. An additional decoder unit is used to
generate compensation for eliminating the error which results
from the one’s complement inversion controllable inverters .

4. SIMULATION RESULTS

Three different designs, Design I - III, and five different designs,
Design I - V, have been implemented for 16-point and 64-point
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parallel-pipelined FFTs. The 64-point and 16-point FFTs are syn-
thesized at 16ns and 12ns clock cycles respectively to maximize
timing slack, using Synopsys DesignCompiler targeting the UMC
0.18µ CMOS technology library. Synopsys DesignPower was
used to evaluate power for 64-point and 16-point FFTs at 20ns and
14ns clock cycles respectively. Tables 5 and 6 provide informa-
tion regarding to main modules for each implementation. For 16-
point FFTs, all 3 designs use the same commutator architectures,
where commutator1 is based on shift registers (SR), and Commu-
tator2 utilizes a triple port SRAM based shuffle. The designs differ
in their use of butterflies and multipliers. For example, Design I
and II are based on Booth coded Wallace tree (wall) multipliers,
whereas, Design III employs multiplier-less technique. Butter-
fly1 and 2 use adder/subtracter architecture (add-sub) for Design I.
However, Design II and III utilize proposed low power butterfly ar-
chitecture (LB). For 64-point FFTs, all designs employ 4 sum units
for butterfly in stage3 (Butterfly3). The multiplier-less approach is
employed in stage2 of Designs III - V and stage1 of Design V.
Commutator1 is realized with dual-port RAMs (DR) for Designs I
- III, and with IDR for Designs IV and V. For all designs, Commu-
tator2 is implemented with shift registers.

Table 5. Implemented architectures for 16-point FFT
Main modules I II III
Commutator1 SR SR SR

Butterfly1 2 X add-sub 2 X LB 2 X LB
Multiplier1 2 X wall 2 X wall 2 X mless

Commutator2 shuffle (TM) shuffle (TM) shuffle (TM)
Butterfly2 2 X add-sub 2 X LB 2 X LB

Table 6. Implemented architectures for 64-point FFT
Main modules I II III IV V
Butterfly1 4 X add-

sub
4X
LB

4X
LB

4X
LB

4X LB

Butterfly2 4 X add-
sub

4X
LB

4X
LB

4X
LB

4X LB

Butterfly3 4 X sum 4X
sum

4X
sum

4X
sum

4X sum

Commutator1 DR DR DR IDR IDR
Commutator2 SR SR SR SR SR
Multiplier1 4 X wall 4X

wall
4X
wall

4X
wall

mless, 3
X wall

Multiplier2 3 X wall 3X
wall

3X
mless

3X
mless

3X mless

The comparative power and area results are illustrated in Fig.8
and 9 respectively. Clearly, the best power result for 16-point FFT
is achieved by Design III, which has 31% power saving, compared
to Design I. For 64-point FFTs, Design V achieves the best power
saving with 30%, compared to Design I. For area comparison, in
16-point FFT, Design III also has 20% area saving, as compared
to Design I. For 64-point FFT, Design III has the best area result,
followed by Designs IV and V.

5. CONCLUSION

The paper proposes two parallel-pipelined architectures for 64-
point and 16-point FFTs. Several novel low power techniques:
multiplier-less, IDR commutator and LB butterfly are presented.
A number of 64-point and 16-point FFTs based on the above tech-
niques were implemented. The impact of parameterization on
power/area performance has been compared. Based on the com-
bination of above mentioned low power techniques proposed by
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the authors, up to 31% power saving and 20% area saving were
achieved, for 64-point and 16-point parallel-pipelined FFTs.
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