<

A Memory Efficient Serial LDPC Decoder
Architecture

Abhiram Prabhakar and Krishna Narayanan
Department of Electrical Engineering,
Texas A&M University,

College Station, TX-77843
Email: {pabhiram,krn} @ee.tamu.edu

We present a memory efficient serial low density par-
ity check(LDPC) decoder that implements a modified Sum
Product Algorithm(SPA). The modification is similar to the
approximate min constraint presented in [1] but differs in
hardware implementation to suit a serial architecture. Our
main contribution is the proposed architecture that exploits
the min constraint to reduce the storage of extrinsic messages
which forms the bulk of the hardware. In the proposed design
the least reliable bit to check input along with the check sum
are the only quantities stored in the decoder. Extrinsic message
memory reduction increases with the rate of the code and up
to 68% savings is achieved for a rate 9/10 code. Simulation
results show that the proposed changes do not degrade the bit
error rate performance.

Keywords-LDPC decoder, SPA, Memory efficient decoding,
Serial hardware decoder.

I. INTRODUCTION

Recently, a number of LDPC decoder architectures have
been proposed [3]- [8]. These architectures have implemented
the widely used Sum Product Algorithm with various ap-
proaches to satisfy throughput and hardware requirements. The
need for large hardware resources is a significant problem
in the implementation of an LDPC decoder. Mostly, serial
architectures that require lesser hardware than parallel imple-
mentations are used. In [4] and [5] a memory efficient turbo
decoding algorithm for LDPC codes is proposed. In [11] the
issues relating to the implementation of a min-sum LDPC de-
coder is explored. In [2] an offset min-sum algorithm offering
tradeoff between performance and complexity is explored to
save extrinsic message memory. In [1] an approximate min
constraint for check node update is proposed. The approxima-
tion is exploited by the decoder to reduce hardware for check
node computation units without any noticeable degradation
in bit error rate performance. We observe that the bulk of
hardware requirement for the serial LDPC decoder lies in
the memory used for storing the extrinsic values(check to
bit or bit to check) and hence attempt to reduce it. The
proposed modification to the SPA explained in section III
is identical to the one proposed in [1] but we implement
the approximation in log-tanh domain to facilitate our serial
decoder architecture. The proposed decoder stores only few

0-7803-8874-7/05/$20.00 ©2005 IEEE

bit to check messages which is very efficient when compared
to architectures proposed in [6], [7] which store all the bit
to check messages and also check to bit messages. When
compared to the A —min serial decoder [2] our design stores
lesser number of extrinsic values and requires lesser memory
to store intermediate partial sums. The proposed decoder is
explained in section IV.

II. DECODING OF LDPC CODES

Let us assume a BPSK modulation scheme where a 1 is
mapped to +1 and 0 is mapped to —1 and an Additive White
Gaussian Noise(AWGN) channel. The received channel values
are converted to log-likelihood ratios given by, L.p(c;) =
;—fn, where o2 is the variance of the noise added in the
channel. Let us define the function, ¢ (z) = log(tanh(%)).

Each decoding iteration has a bit node update and a check
node update. Let L4(7) represent the check to bit message
along the i*" edge connected to the n** check node during the
q'" iteration(we will not explicitly use the index n to denote
quantities associated with the n‘" node as the operations are
identical at all nodes). Similarly, let L] (i) represent the bit to
check value along the i*" edge connected to the n*”* bit node.

Enforcing the parity check constraint on the incoming bit
to check values, the check node update is given by,

k=t
U (07l ()N IR TN (Y

L) =
k=1k#i
k=t
sign(LLG) =[] sign(zi (k) @)
k=1,ki

Where t is the degree of the check node and index k refers
to the k" edge connected to the check node. For serial
implementation in hardware, Eq. 2 is divided into two steps.
First, we find two quantities M1 and S1.

k=t k=t
M1=> (LN k) S1=]]sign(LE (k) (3)
k=1 k=1

Note that by definition of ¢ and M1 are always negative.
Next, we find M2(i) and S2(i) for all the edges i = 1 to ¢

ICASSP 2005

according to

M2(i) = M1 — (L' (1)) S2(i) = S1 x sign(L¥ (1))

4)
Now,
La(i) = S2(i) x ¢~ (M2(i)) 5)
The soft output for the n*”* bit is given by,
Ll = Len(ca) + Y Li(k) (©6)
k
The bit node update is given by,
LT (0) = Len(en) + Y LA(K) @)
k#i
Alternatively, the bit node update can be written as,
LEFN(i) = Liypy — LA(0) ®)

The n'? bit is decoded as 1 if L, ¢ <0, else as 0.

III. PROPOSED MODIFICATIONS

We propose to modify M2(i) given by Eq. 4. Among the
edges 1,2, ...t connected to a check node, let the j** edge have
the lowest magnitude of L. That is j = argmin; |Ly(7)|. Then
M2(j) is given by,

M2(j) =
M2(i)

M1 = $(L{ (7))
M1 for all other edges(i # 7)

€))
(10)

Our proposed modification is identical to the one proposed
in [1] but our serial decoder implementation exploits this
approximation to save extrinsic memory and is computed in
the log-tanh domain. The approximation as defined in [1] is
computed directly on LLR values and this would require more
memory than our proposed design for a serial decoder and
the reason is explained in section IV. If eq(9) was used in
computing M2(i) for all the edges of a check node then this
would be the normal SPA, a serial implementation of which
would need memory to store M1 for each check node and
memory for storing all the bit to check values to compute
M2(i) and thereby the L. values. Due to the proposed
modification and the proposed serial decoder architecture that
exploits the modification, we need memory to store M1 and
only the least reliable bit to check value for each check node.
From the bit error performance plots in Fig. 1, we can see
that the proposed modification to the SPA algorithm leads to
no noticeable loss in performance and performs better than
min-sum decoding which is another possible approximation to
reduce the memory requirement. The reason for this behavior
is the the under estimation of check to bit messages and we
shall explain this in the following section.

The following can be noted about the 1 (z) function - (i)
¥ (z) is always negative, (i) |¢)(z)| is a decreasing function
of |x| and finally, (iii) the function v (z) has a large slope
for 0 < |z| < 2 (equivalently, the function ©~!(z) has a
shallow slope in the range 0 < 3 ~!(z) < 2 and hence, is
quite insensitive to x in that range. Let us call this as the ‘flat

T
— normalSPA
— - proposed
—— min-sum

Bit Error Rate

Rate 0.5 Code
Rate 0.9 Code
107F .
10° I I I I I I
15 2 25 3.5 45 5 55
E N
b o
Fig. 1. Ey/No vs BER for a rate 0.5 and rate 0.9 code of length 2040 after

30 decoding iterations.

region’). Due to (i), M1 =)" 9(Ly(7)) is always negative
(henceforth, we shall refer to quantities M1 and M2 only by
their magnitudes). Due to (ii), we can see that highly reliable
inputs to the check i.e. the inputs with large value of |L,|
contribute little to M1 (since ¥ (Lp) is very small) and the
less reliable Ly inputs contribute larger values to M 1. Hence
M1 will be small when all the bit to check values are reliable
and large when some of them are unreliable. In our proposed
modification we do not subtract 1)(Ly(i)) from M1 in finding
M2(i) except for the least reliable edge. Since 1(Ly(7)) is
small for the reliable edges, the approximation error in not
subtracting ¢(Ly(7)) is small. Further note that if at least one
of the incoming edges is unreliable, the overall value of M1
will be in the flat region and, hence, any small approximation
error will not cause a large error in |L.(7)| = ¥~ 1(M2(i)). If
all the incoming edges are reliable, then M1 will be small and
the approximation error will be higher, but interestingly, when
the incoming edges are all reliable, the outgoing messages are
also fairly reliable and, hence, such an approximation error
will not significantly affect the iterative decoding algorithm.
Note that for a given set of Ly(i)’s, for the least reliable
edge, M2p,,0p(j) = M2spa(j) and along all other edges
M2pr0p(i) > M2gpa(i), where M2,,.,, and M2gp 4 are the
M2 values with the proposed algorithm and with the SPA,
respectively. Since higher values of M2 correspond to less
reliable extrinsic messages, the proposed algorithm actually
provides pessimistic estimates for L.(7) compared to the SPA.
This is particularly an interesting feature of the algorithm since
not subtracting the a priori information in the LLR domain (for
example, at the bit note update) can result in more optimistic

extrinsic values, which can cause error propagation. Hence,
the approximation in the ¢ (z) domain is an important feature
of this algorithm. Fig. 2 shows a plot of L.(7) values after
iteration 1 for a rate 0.5 regular LDPC code at an Ej, /Ny of 2.2
dB with the all zero sequence being transmitted. As iterations
progress the least reliable input to a check might change but
the L. (i) values for the proposed scheme stay close to that
of a normal SPA decoder (the plot is not shown due to space
limitations.)

8-

Lc Proposed
o
T

4 I I I I I]
-4 -2 0 2 4 6 8

Lc SPA

Fig. 2. Check to Bit values for the proposed scheme after iteration 1.

It is interesting to contrast the proposed algorithm with the
min-sum algorithm, which is another approximation of the
SPA and can be implemented with lower memory in hard-
ware. For a min-sum decoder M2,,insum (i) < M2gpa(i).
Hence, the extrinsic messages from the check node are al-
ways optimistic compared to SPA decoding(|Lcminsum (i) >
|Lespa(?)]). This positive feedback appears to propagate
errors in the iterative decoder resulting in a worse BER than
the proposed algorithm.

We can apply the proposed modification for the least two
reliable edges instead of one. This would require more memory
as we need to store the bit to check values along these two
edges instead of one. Since the performance of the proposed
scheme is good and our objective is to minimize the hardware
requirement we restrict ourself to implementing the changes
only along one edge.

IV. PROPOSED SERIAL DECODER IMPLEMENTATION

A serial LDPC decoder is one that computes one check
update or one bit update during a clock cycle. The decoder
architecture should be designed to effectively use the modifi-
cation to the SPA algorithm to minimize extrinsic message
storage. Depending on the architecture either bit to check
extrinsic messages or check to bit extrinsic messages or both
of them are stored at the decoder. We shall design our proposed

serial SPA decoder to store only one type of messages. Let us
first consider a serial decoder design that uses the approximate
min algorithm as in [1] that directly works on bit to check
messages in the LLR domain. This would require processing
one check update at a time. First, the magnitude of bit to check
messages at a check are compared to find the least one. Next,
the algorithm finds two check to bit messages, one for the least
bit to check edge and another for the other edges. The decoder
would need to store these two check to bit extrinsic messages
for each check. These check to bit messages would update the
corresponding partial bit sums according to Eq. 6(The bit sum
memory is used to store partial L, ; values for each bit node).
The bit sum values and the stored check to bit messages would
be later used to compute the bit to check messages according
to Eq. 8 and hence eliminate the necessity to store bit to
check messages. Hence the decoder would require memory
to store the partial bit sum updates for the current iteration
and memory to hold the bit sum from previous iteration to
compute bit to check messages for the current iteration. The
size of each bit sum memory is proportional to the length of
the code and is independent of the rate of the code. Suppose
we can store the check sums(M1) instead of bit sums, then
the size of this memory would be proportional to the number
of checks and hence would decrease with the rate of the code.
Also we would like to store only one extrinsic message per
check instead of two. These requirements can be met if we
compute one bit update at a time and use the bit to check
messages to update partial check sums and hence distribute
M1 computation over the length of the code. Since we do
not compute one check at a time the algorithm in [1] cannot
be used directly and hence we implement the min constraint
in the log-tanh domain. In the log-tanh domain once M1 has
been computed for all the checks, M2 can be computed easily
by subtracting the bit to check message from M 1. In the LLR
domain the check to bit message cannot be computed from a
quantity that includes all the bit to check messages. Hence,
implementation of the min constraint in the log-tanh domain
as proposed in this paper becomes a necessity for any decoder
design that does not compute all the check to bit messages for
a check node together. In our design M1 values for all the
check nodes are computed first and simultaneously, only the
least reliable bit to check input to each check node is stored.
After this is done, M2 values are computed using equation 9
or 10.

Fig. 3 shows the block diagram of the proposed serial
decoder for a (3, k) code. The FIFO stores the sign of bit to
check messages (L) from the previous iteration and simulta-
neously, the (51, M1) values for the checks in which the bit
participates are updated and stored in memory blocks(RAMs).
The memory blocks in addition to (S1,M1) also store the
least reliable bit to check input L,,;, and Cnt. Cnt identifies
the edge corresponding to L,,;, and is used for generating
the select signal in the multiplexer to select between M1 or
the subtracted value for M 2. The comparator compares the
least reliable bit to check message stored in the RAM for a
check node with the incoming value and updates L,y It can

be seen that L; values update the corresponding M1 values
one at a time and the final M1 values are obtained only
after all the L;, values have updated the corresponding M1
values. Hence, the computation of M1 values is distributed
over the length of the code and not done one at a time. Once
M1 is computed for all the check nodes, Cnt and L,,;, can
be used to compute M2 according to eq(9) or eq(10). Two
sets of memory banks can be used so that when partial M1
values are updated in one memory bank A2 values can be
formed from the other memory bank that holds the M1 values
from previous iteration. In a normal serial SPA decoder we
need to have stored both the sign and magnitude of all the
incoming L; messages in the FIFO to compute M2 and hence
there is a significant reduction in memory requirement for the
proposed design. The extra hardware required for comparator,
multiplexer, mux select etc are small as only one of them is
there in each path. In our previous work [8], we have shown
that the serial architecture can be easily scaled to a partly
parallel architecture with various levels of parallelization. The
approximate min scheme in log-tanh domain can be easily
implemented on each parallel path. The proposed technique
can also be easily incorporated into a partly parallel LDPC
decoder [8] [9] to save extrinsic memory.

V. RESULTS AND CONCLUSIONS

Here we present some examples of savings in extrinsic
memory for the proposed decoder design. Let us consider a
design where the LLR and 1) values have 5 bit precision(1 for
sign and 2 for magnitude and 2 for decimal. Let (51, M 1) have
6 bits precision. We first look at a (2040, 204, 3, 30) rate 0.9
code. In the proposed decoder the FIFO stores only the sign
of Ly messages and hence require only 2040 x 3 = 6120 bits.
The RAMs, in addition to M1 have to store L,,;, Which is 3
bits and Cnt which is 5 bits(each check has 30 incoming L,
values and hence log,(30)) for each check node and hence
require 204 x 8 = 1632 bits. The total memory required is
7752 bits. A normal SPA decoder with similar architecture
would need 2040 x 3 x 4 = 24480 bits for the FIFO. Hence
there is a 68% reduction in extrinsic memory for the proposed
design. For a rate 0.5 code of same length a 50% reduction
is achieved. Most of the architectures listed in the references
require memory in the order of the number of extrinsic values
plus memory in the order of the length of the code/number of
checks. When compared to the serial A-min decoder [2], our
serial decoder requires even lesser memory. We store only one
extrinsic messages and identifier per check whereas [2] stores
A extrinsic messages and identifiers per check. Also the partial
check sum memory which decreases with the rate of the code
is much less when compared to the partial bit sum memory
used in the A-min decoder. In our design the reduction in
memory increases with the rate of the code since the number
of checks decrease. Simulation results for codes of different
rates showed no noticeable loss in performance and hence we
have presented a novel memory efficient serial LDPC decoder.

st
| rRami Len

I 2

e

Sign Bit
*’@‘ Unit
S1RAM2

L'l FIFO
Ly%(2) (sign only)
Lp'(3)
\X

Bit

Update

= L")

> L)
-

L'3)

ST RAMS;

e =t 0
@.7

M1

MI
[Compamor]
(Min)

.......

Ly'(1) mag

Ly¥(2) ma
N e Components ’(‘—‘
Similar (o path | RAM2 Similar to path 1

Ly'(3) mag

C

Similar to path 1

RAM3

Components
Similar to path 1

Check
'+{ Update
Block

Fig. 3. Block diagram of the proposed Serial LDPC decoder.

REFERENCES

[1] C.Jones, E. Valles, M. Smith, J. Villasenor. Approximate-Min Constraint
Node Updating for LDPC code design. IEEE conference on Military
Communications, 2003. MILCOM 2003, 13-16 Oct 2003, pages:57-162.

[2] F. Guilloud, E. Boutillon, J.L. Danger. A-Min Decoding Algorithm
of Regular and Irregular Codes. Proceedings of the 3nd International
Symposium on Turbo Codes & Related Topics,Brest,France, Sept 2003.

[3] S. Sivakumar. VLSI Implementation of Encoder and Decoder for
Low Density parity check codes. Masters Thesis, Texas A&M Univer-
sity,December 2001.

[4] M.M. Mansour, N.R. Shanbhag. Memory efficient turbo decoder archi-
tecture for LDPC codes. IEEE workshop on Signal Processing Systems,
2002(SIPS’02), 16-18 Oct 02, pages:159-164.

[S] H. Sankar, K. R. Narayanan. Memory-Efficient Sum-Product Decoding
of LDPC Codes. To appear in IEEE Tansactions on Communications.

[6] E. Yeo, P. Pakzad, B. Nikolic, V. Anantharaman. High throughput Low-
Density Parity-Check decoder architectures. IEEE Global Telecommuni-
cation Conference,2001. GLOBECOM’01, vol:5, pages:3019-3024.

[7]1 T. Zhang, K.K. Parhi. A 54 MBPS (3,6)-regular FPGA LDPC decoder.
IEEE Proc. of SIPS, pp.127-132, 2002.

[8] A. Selvarathinam, G. Choi, K. Narayanan, A. Prabhakar, E. Kim. A mas-
sively scalable architecture for low-density parity-check codes. Circuits
and Systems 2003, ISCAS’ 03, Volume 2, 25-28 May 2003. Pages:I1-61-
1164 vol.2.

[91 K. Gunnam, G. Choi, M. Yeary. An LDPC decoding shedule for
memory access reduction. Acoustics, Speech, and Signal Processing,
2004. ICASSP 04, vol:5, 17-21 May 2004, pages:173-176.

[10] Y. Chen, D.Hocevar. A FPGA and ASIC implementation of rate 1/2,
8088-b irregular low density parity check decoder. IEEE Global Telecom-
munciations Conference, 2003. GLOBECOM’03, vol:1, 1-5 Dec.2003,
pages:113-117.

[11] F. Zarkeshvari, A.-H. Banihashemi. On implementation of min-sum
algorithm for decoding low-density parity-check(LDPC) codes. IEEE
Global Telecommunications Conference,2002. GLOBECOM’02, vol:2,
Nov 17-21, 2002, pages:1349-1353.

