<

TIME AND ENERGY EFFICIENT VITERBI DECODING USING FPGAS *

Jingzhao Ou, Viktor K. Prasanna

Department of Electrical Engineering
University of Southern California, Los Angeles, CA 90089

ABSTRACT

State-of-the-art FPGAs integrate multi-million gate con-
figurable logic and heterogeneous hardware components.
They are an attractive choice for implementing Viterbi de-
coders. As more emphasis is placed on time and energy per-
formance, previous FPGA implementations of Viterbi de-
coders either fail to provide high data throughput or are not
energy efficient. In this paper, we propose an architecture
for implementing Viterbi decoders on FPGAs. Our architec-
ture can provide various throughput and energy trade-offs.
Considering the throughput/energy performance metric, ex-
perimental results show that our design achieves improve-
ments up to 26.1% compared with the previous designs.

1. INTRODUCTION

Convolutional encoding with Viterbi decoding is a power-
ful method for forward error correction. It has been widely
deployed in many wireless communication systems to im-
prove the limited capacity of the communication channels.
With the proliferation of portable and mobile devices as well
as the ever increasing demands for high-speed data trans-
mission, both time (e.g. throughput) and energy efficiency
have become important performance metrics when imple-
menting Viterbi decoders [9].

The rapid evolution of modern FPGAs have led to the in-
clusion of up to multi-million gate configurable logic and
various precompiled hardware components (e.g. memory
blocks, dedicated multipliers, etc.) on a single chip. Ex-
amples of these FPGA devices are Xilinx Spartan-3/Virtex-
II/Virtex-II Pro [10] and Altera Stratix/Stratix-II [1]. These
FPGA devices provide high computational performance,
low power dissipation per computation, and reconfigurabil-
ity. Therefore, they are an attractive choice for implement-
ing various functions of telecommunication systems such as
Viterbi decoding, adaptive beamforming, etc. [2].

Several researchers have implemented Viterbi decoders
on FPGAs [6], [8] (See Section 2 for more details). How-
ever, these designs either fail to provide high throughput
(requiring tens of clock cycles to generate each output sym-
bol) or use a lot of registers and multiplexers and thus con-
sume a lot of energy. In this paper, we propose a circular
linear pipeline architecture based on the trace-back algo-
rithm for implementing Viterbi decoders on FPGAs. The
two major advantages provided by our design are: (1) high
throughput: the tracing back, updating, and storing of the

*THIS WORK IS SUPPORTED BY THE UNITED STATES NATIONAL SCI-
ENCE FOUNDATION (NSF) UNDER AWARD NO. CCR-0311823.

0-7803-8874-7/05/$20.00 ©2005 IEEE

input information sequences are accomplished concurrently
within the processing elements (PEs) that constitute the cir-
cular linear pipeline. Our circular linear pipeline architec-
ture overcomes the low throughput problem in the previous
implementations of the trace-back algorithm. The degree
of parallelism of our design is parametrized and is deter-
mined by the number of PEs employed; (2) high energy ef-
ficiency: First, by employing a trace-back algorithm, our
design greatly reduces data movement compared with the
register-exchange algorithm. Switching activity, a dominat-
ing factor that affects energy dissipation, is also reduced.
Second, embedded memory blocks are used as the main
storage. Embedded memory blocks dissipate much less
power per bit data than that of slice-based memory blocks
and flip-flop based registers.

The paper is organized as follows. Section 2 discusses
related work. Our implementation of the Viterbi decoding
algorithm is presented in Section 3. Experimental results
are shown in Section 4. We conclude in Section 5.

2. RELATED WORK

As is discussed in [3], implementations of the Viterbi al-
gorithm can be classified into two categories, register-
exchange and trace-back, depending on how the informa-
tion of the surviving paths is stored.

The register-exchange algorithm stores the surviving
paths at each step of the decoding trellis directly. When the
data comes in, each pair of surviving paths compete with
each other in the next step of the decoding trellis. The com-
plete surviving path is copied to the place where the dis-
carded path is stored. Since the surviving paths are stored
explicitly, when the truncation length is reached, the out-
put symbol can be obtained immediately from the end of
the surviving path with the greatest possibility of matching
the input data sequence. An implementation of the register-
exchange algorithm on FPGAs is proposed by Swaminathan
et. al. [6]. They realized a suboptimal Viterbi decoding al-
gorithm. In their design, copying of the surviving paths is
realized using multiplexers and registers. The high mem-
ory bandwidth required by the concurrent copying of sur-
viving paths prevents the use of embedded memory blocks
even though embedded memory blocks are much more en-
ergy efficient than registers for storage. This is because ac-
cess of the data stored at the memory blocks is restricted
to two 32-pin I/O ports, which cannot provide such a high
memory bandwidth. Another drawback is that all the mul-
tiplexers and registers are active during the decoding proce-
dure, which consume a lot of power. Hence, while their de-

ICASSP 2005

Branch Selection Unit

do - Trace-back Unit
Input data d >
sequence d: > Output data
s . —
—gio'_f’mhm

Comparator tree

Fig. 1. Architecture of the proposed Viterbi decoder

sign provides high throughput, it is not suitable for energy-
constrained systems.

In contrast, using techniques such as the one-bit function
proposed in [8], the trace-back algorithm stores the tran-
sitions between two consecutive steps on the trellis. No
path copying is required when a path is discarded. Since
the path information is stored implicitly, when the trunca-
tion length is reached, a trace-back stage is required to trace
back along the path transitions in order to identify the output
symbol. An implementation of the trace-back algorithm can
be found in a low-power architecture for Viterbi decoding
proposed by Liang et. al. [4]. Embedded memory blocks
are used to improve energy efficiency. However, their de-
sign is pipelined. For environments with low SNR, a long
truncation length is required and their decoder results in a
very low data throughput.

Xilinx provides two implementations of Viterbi decoders
on their FPGA devices [10]. The parallel implementation
employs the register-exchange algorithm while the serial
implementation employs the trace-back algorithm. Both
versions suffer from either high energy dissipation or low
throughput problem as described above.

Truong et. al. [8] propose a fully pipelined VLSI ar-
chitecture to implement Viterbi decoding using a trace-back
algorithm. Their design achieves a high throughput of one
output symbol per clock cycle. However, in their architec-
ture, all the storage registers are active during the decoding
process. This would result in a high memory I/O bandwidth
requirement. Such requirement cannot be sustained by the
embedded memory blocks on FPGAs. It would also result
in high energy dissipation due to significantly high switch-
ing activity. Therefore, the design in [8] is not suitable for
implementation on FPGAs.

3. OUR DESIGN

Our design of Viterbi decoder is based on the trace-back al-
gorithm. The overall architecture of our design is shown in
Figure 1. It consists of two major components: the branch
selection unit and the trace-back unit. The branch selection
unit calculates the partial costs of the paths traversing the
decoding trellis, selects surviving paths, and identifies par-
tial paths with lowest costs. The memory blocks within the
trace-back unit store the selection results from the branch
selection unit. Using the stored path selection information,

the trace-back unit traces back along the paths with lowest
costs identified by the branch selection unit and generates
output symbols. We employ a circular linear pipeline of
PEs and move the data along the linear pipeline so that the
trace-back operations can be performed concurrently within
the PEs. Details of these two components are discussed in
the following subsections.

3.1. Branch Selection Unit

Let K denote the constraint length of the convolutional code
and TL denote the truncation length of Viterbi decoder.
Then, there are 2% —1 surviving paths at each step of the
decoding trellis and one output symbol is generated after
tracing back TL steps on the trellis.

ab ab. a b ab
11 i 11 i
So 00 00 S0 00 ©® ® 00
Sz 10 10 Sz 10 >< 10
S1 01 01 S1 01 01
S 11 11 S 11 ® ® |
3 3
(a) (b)
Fig. 2. (a) Possible connections between two consecu-

tive steps on the trellis; (b) one selection path result for
(do,d1,da,d3) = (0,1,0,1)

Since the branch selection unit is relatively simple, we
fully parallelize its operations in order to achieve a high
data throughput. The branch selection unit is clock gated so
that it dissipates negligible amount of energy when there is
no input data. There are 251 Add-Compare-Select units,
ACSy, 0 < k < 2K-1 — 1. Each ACS unit is respon-
sible for selecting one of the 25~ surviving paths and
calculating its cost pC'st. The path selection results, dy,
0 < k < 2K-1 1, is represented using the one-bit func-
tion proposed in [8]. For example, we consider the possi-
ble connections between two consecutive steps on the de-
coding trellis as shown in Figure 2(a). For each pair of
paths merging into a node on the right, only one of them
is selected. dj, = 0 if the path coming from above is se-
lected; dj, = 1 if the path coming from below is selected.
The selection result shown in Figure 2(b) is represented as

(do,d1,d2,ds) = (0,1,0,1). Finally, the costs of the sur-
viving paths are sent to the comparator tree where the path
with the lowest cost is identified.

The comparator tree is fully-pipelined and is composed
of 2% — 1 comparator modules. The architecture of these
comparator modules is shown in Figure 3. Each module
accepts the partial path IDs (pID; and pID5) and the costs
(pC'sty1 and pC'sts) of the two input paths and outputs the
partial path ID (pID3) and cost (pC'st3) of the path with the
lower cost.

pID1
pID2

pCsti
pCst2

Fig. 3. The comparator module

3.2. Trace-back Unit

As shown in Figure 1, the trace-back unit consists of a cir-
cular linear pipeline of IV,, processing elements (PEs), PE;,
0 <i < N, — 1. N, is a user-defined parameter and deter-
mines the throughput of the Viterbi decoder.

The architecture of a PE is shown in Figure 4. The
path selection information from the branch selection unit
is stored at the survivor memory. Instead of the central-
ized architecture adopted by the previous designs, we im-
plement the survivor memory in a distributed manner. Each
PE has its own survivor memory implemented using the em-
bedded memory blocks (BRAMs) on Xilinx FPGAs. These
BRAMs provide two I/O ports (port A and port B) that en-
able independent shared access to a single memory space.
The data from the branch selection unit comes into the sur-
vivor memory through port A of the BRAMs and is made
available to the trace-back circuits through port B. Let L de-
note the trace-back depth of the PEs. The memory space of
each PE is divided into two parts, each of which stores the
trace-back information of L consecutive steps on the decod-
ing trellis. These two parts of memory space are used alter-
natively to provide trace-back information to the trace-back
circuit through port B and to store the data from the branch
selection unit through port A.

The lower part of Figure 4 shows the trace-back circuit
when K = 3. y; j(a;,;b; ;) are the path selection informa-
tion from the survivor memory. Regs are registers that store
(@;,;b; ;) the status of trace-back path 7 at step j. Accord-
ing to the definition of one-bit function in [8], the state of
trace-back path ¢ at step 5 — 1 can be obtained using the
following equations.

a;j-1=0b;; (D
bi,j—l = yi,j(ai,jbi,j) 2)

Survivor memory |

v, ,(00)[y, (10)]y, 00w, (1)
] \ Mux1 /4:‘— I

PathiD |y, ,(m,) |
b, ; 1 To next PE

Y L7
----- ¥ 1

From !
previous PE .

Control signal

Fig. 4. PE; in the circular linear pipeline

Equation 2 is implemented using multiplexer MUX; in
Figure 4. The data required by the concurrent trace-back
processes is stored in a distributed manner among the PEs.
Multiplexer MUX, is responsible for moving the trace-back
processes along the circular linear pipeline so that these
processes can be executed in the PEs where the required
trace-back data is stored.

Figure 5 illustrates the data movement in the PEs when
the parameters of the decoders are set as K = 2, N, = 3,
and L = TL = 10. We assume that the trace-back infor-
mation for steps 1 to 10 and steps 31 to 40 is stored at PE}
before time 1. Then, during time 1 to 200, PE initiates the
trace-back processes that generate output symbols 22 to 31.
Note that the trace-back processes may be moved to the next
PEs along the circular linear pipeline in order to obtain the
required data from the survivor memory of those PEs. For
example, in the trace-back of 32—23, 32—31 is performed
in PE; initially. Since the path selection information of
step 30 to 23 are stored in P E'3, multiplexer MUX> in Fig-
ure 4 moves the remaining trace-back process of 31—23 to
be performed in P F5. In the mean time, the trace-back data
for step 61 to 70 comes in from the branch selection unit
and is stored at the place where the trace-back data for step

PE1 PE2 PE3
Time input trace-back input trace-back input trace-back Output

1-20 (61-70) 31522 41-32 5142 22,32,42
21-40 1 3223 (71-80) 4233 52—43 23,33,43
41-60 (1-10) 33-24 ! 4334 (81-90) 53—-44 24,3444

(11-20) 1
161-180 39-30 49-40 (21-30) 59-50 30,40,50
181-200 40—31 50—41 60—51 31,41,51
201-220 (91-100) 6152 7162 81572 52,62,72
241-260 1 62—-53 (101-110) 72—63 8273 53,63,73
261-320 (31-40) 63—54 ! 73—64 (111-120) 83—-74 54,64,74

(41-50))
361-380 69—60 7970 (51-60) 89—-80 60,70,80

381-400 70—-61 8071 90—-81 61,71,81

Fig. 5. Concurrent decoding processes within the PEs

1 to 10 is originally stored. The data in PE5 and PE3 is
stored and updated in a similar manner as in PE;.

3.3. Performance Analysis

Tracing back one step on the trellis is performed within one
clock cycle. Thus, each PE generates one output symbol
every T'L clock cycles. Since the decoding process occurs
concurrently in all the IV,, PEs, the throughput of our de-
coderis N,,/TL output symbol per clock cycle. Constrained
by the branch selection unit, the maximum throughput is
equal to or less than one output symbol per clock cycle,
which poses limitations on NV, that V,, < T'L.

4. EXPERIMENTAL RESULTS

Parameterized designs of our Viterbi decoder were de-
scribed in VHDL. Synplify Pro 7.2 [7] was used for syn-
thesis. ISE 5.2.03 [10] was used for implementation. Mod-
elSim 5.7 [5] was used for simulation. Our target device
was Xilinx Virtex-II Pro. The energy values were obtained
by using XPower [10] to analyze the simulation files from
ModelSim which record the switching activities of each
logic and wire on the device.

We consider two optimal 1/2-rate convolutional codes in
octal format: (57, 65) for K = 6 and (357, 233) for K = 8.
Truncation length T'L is set as 10 - K. Also, we set the op-
erating frequency of the decoders to be 100 MHz and the
trace-back length L of the PEs to be 256. The throughput
and energy performance of the two Viterbi decoders config-
ured with different numbers of PEs are shown Figure 6.

As discussed in Section 3.3, the throughput of our Viterbi
decoders increases linearly with the number of PEs, N,,.
The energy dissipation for decoding one bit data also in-
creases due to the costs for sending input data to each
PE and moving the trace-back processes along the linear
pipeline. When N, = 1, our designs lead to the serial
implementations of the trace-back algorithm discussed in
Section 2. Thus, designs with N, = 1 are used as the base-
line to illustrate the performance improvement. We consider
throughput/energy as the performance metric. Designs
with N, = 32 achieve maximum performance improve-
ments of 26.1% when K = 6 and 18.6% when K = 8
compared with the baseline designs with IV}, = 1.

Note that placing and routing the designs become more
complicated with more PEs. Designs with more than 32
PEs are unable to meet the 100 MHz timing constraint and
thus are not shown in Figure 6.

5. CONCLUSION

An architecture for implementing high throughput and en-
ergy efficient Viterbi decoders on FPGAs is proposed. The
effectiveness of our design is shown through the analysis of
the architecture as well as low-level experimental results.
The use of multiple clock domains as in the Xilinx design
of Viterbi decoder [10] can also be applied to our design to
further improve throughput and energy efficiency. Besides,
our architecture can be used to derive time and energy ef-
ficient Turbo code decoders. The iterative decoding style

x 10

~ &)
: T
.

N

~

N
N
Energy per bit (nJ)

Energy

N
T

Throughput (bit per second)
(]
3

—_
T

1 2 16 32

4 8
Number of PEs (N,
(a) K =6, TL = 60

x 10

4t 1150
535 1140
c
8 —~
g o 1303
225 1208
= [
S 2 102
a >
£ 157 100 @
=] 1T}
g 1 190
= Energy

0.5 180

o

1 2

4 8 16 32
Number of PEs (N)

(b) K =8, TL = 80

Fig. 6. Performance of the proposed Viterbi decoder

of Turbo code decoder results in a low data throughput for
a serial trace-back based design while its long truncation
length and back-updating causes high energy dissipation for
a register-exchange based design.

6. REFERENCES

[1] Altera, Inc., http://www.altera.com.

[2] C. Dick, “The Platform FPGA: Enabling the Software Ra-
dio,” Software Defined Radio Tech. Conf. (SDR), 2002.

[3] G. Forney, “The Viterbi Algorithm,” Proc. IEEE, 1973.

[4] J. Liang, “Development and Verification of System-On-a-
Chip Communication Architecture,” Ph.D. Thesis, Univ. of
Mass., 2004.

[5] Mentor Graphics, Inc., http: //www.mentor . com.

[6] S. Swaminathan, R. Tessier, D. Goeckel, and W.
Burleson,“A Dynamically Reconfigurable Adaptive Viterbi
Decoder,” ACM FPGA, 2002.

[7]1 Synplicity, Inc., http://www.synplicity.com.

[8] T. Truong, M.-T. Shih, Irving S. Reed, E. Satorius,“A VLSI
Design for A Trace-back Viterbi Decoder,” IEEE Trans.
Comm., March 1992.

[9] Walter Tuttlebee, “Software Defined Radio : Enabling Tech-
nology,” John Wiley & Sons, Inc., 2002.

[10] Xilinx, Inc., http://www.xilinx.com.

I 2

