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ABSTRACT

In the past few years, the Low Density Parity Check 

(LDPC) codes have received lot of attention for their 

excellent performance, and inherent parallelism involved 

in decoding them.  In this work we consider a type of 

structured binary LDPC codes known as array LDPC 

codes, which have low encoding complexity and good 

performance, for implementation on Xilinx Field 

Programmable Gate Array (FPGA) device.  

1. INTRODUCTION 

A basic communication system is composed of three 

parts: a transmitter, channel, and receiver. Transmitted 

information becomes altered due to noise corruption and 

channel distortion. To account for these errors, 

redundancy is intentionally introduced, and the receiver 

uses a decoder to make corrections. In error-correcting 

control (ECC), it is important to have a high code rate 

while maintaining low complexity. 

            It’s a well-known fact that the LDPC codes can 

achieve information rates very close to the Shannon limit 

when iteratively decoded [1]. LDPC decoders are also 

known to have arithmetic computations requirement that 

is an order of magnitude less than Turbo decoders [2] that 

provide similar bit-error rate (BER) performance. 

Furthermore, algorithms for decoding LDPC codes also 

have the advantage of being inherently parallel. In 

principle, this permits exploiting the common approach of 

using multiple parallel processing elements to increase the 

throughput of the decoder. As far as hardware 

implementation of the decoder is concerned, however, the 

exploitation of parallelism is a serious challenge.  This is 

due to the immense complexity of the interconnects 

between the processing elements. 

       This paper discusses the implementation of array 

based LDPC codes (ALDPC). We successfully show that 

the ALDPC codes can be efficiently implemented using a 

partly parallel architecture [4]. Beyond just bit-error rate 

(BER) performance the objective is to demonstrate 

simplicity, and high efficiency of the hardware due to the 

structure imposed on the code.

2. REVIEW OF LDPC CODES 

The LDPC code is a class of parity check codes, which 

can be fully defined by a parity–check matrix H. To be 

specific, it is defined as the null space of a very sparse 

MxN parity check matrix H, an LDPC code is represented 

by a bipartite graph, called Tanner graph (see fig. 1), in 

which one set of N bit or variable nodes corresponds to 

the set of codeword, another set of M check nodes 

corresponds to the set of parity check constraints and 

each edge corresponds to a non-zero entry in the parity 

check matrix H.

Figure 1. Tanner graph representation of LDPC code. 

     Effective decoding of LDPC codes can be done by 

an iterative algorithm called belief-propagation (BP) (also 

known as sum-product). The structure of BP decoding 

algorithm directly matches the Tanner graph, and in 

principle, enables us to make use of the parallelism. 

Unfortunately, randomly constructed LDPC codes entail a 

random layout of the interconnects between variable and 

check nodes. This makes the exploitation of parallelism 

very difficult because of limited routing resources 

available. For instance, a decoder based on direct mapping 

of BP algorithm is presented in [3], for a relatively short 

code this design uses up 50% of the chip area just for 

routing the messages.  This is only going to get worse as 

the code length increases.

     In this paper we make use of the partly parallel 

architecture for a special class of LDPC codes called 

ALDPC. The structure of ALDPC codes is one of the best 

suited for partly parallel architecture. Using ALDPC 

codes greatly simplifies the routing complexity, thus 

making is suitable for implementation on an FPGA 

device. 
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3. ARRAY BASED LOW DENSITY PARITY 

CHECK CODES 

The H matrix based on array codes is different from the 

usual H matrices. It can be represented as follows [5]. 

        Where I is a p x p identity matrix with a prime 

number p. The dimensions of the matrix are N x K = jp x 

kp with integers pkj, .  is a permutation matrix 

with a single cyclic right shift or left shift. For p = 5 

resultant is displayed below. 

    Efficient encoding, minimum distance properties 

and good performance of ALDPC codes have been shown 

in [5]. Array codes have almost the same BER 

performance as randomly generated codes when an inter-

leaver is used between the encoder and the channel. Array 

codes have a quasi-cyclic structure that can be exploited 

to greatly reduce the hardware complexity of the decoder 

maintaining comparable error rate and throughput at the 

same time. This makes it a very attractive candidate for 

high-density storage applications. In addition, by dividing 

the H matrix into multiple identity/permutation matrices 

the interconnections become localized thus lowering the 

routing complexity.  

4. DECODING THE LDPC CODES 

Belief Propagation algorithm has been described in 

numerous articles before. Here we merely represent the 

BP algorithm [4]. Following steps summarize the BP 

algorithm: 

1. Initialize each variable node with the intrinsic (or 

channel) information, and from this compute the variable-

to-check message.

2. Pass the variable-to-check message from variable 

nodes to check nodes along the edges of Tanner graph.

3. At each check node generate the check-to-variable

message using all incoming messages from the incident 

variable nodes. 

4. Pass the check-to-variable message from check nodes 

to variable nodes along the edges of Tanner graph. 

5. At each variable node update the estimate of the 

corresponding bit (using the incoming message and 

intrinsic information) and compute the outgoing variable 

to check message. 

6. Repeat steps 2-5 until, either a valid codeword is 

reached or a fixed number of iterations have been 

performed.   

     It’s easier to perform arithmetic on hardware when 

messages are in log domain. All the messages are in fact 

log likelihood ratios (LLR). In our work all the messages 

have 4-bit precision.  

5. DECODER ARCHITECTURE 

The basic architecture of this design is shown in Fig.2. (In 

the figure B represents bit node, and C represents check 

node).

Figure 2. Basic Architecture of the decoder 

      The implemented decoder consists of three basic units 

shown in Figs. 3 to 5. We call them the Bit node (Variable 

node), Check node, and the Temporary check node units.  

From here on, these blocks will be referred to as BNU, 

CNU and CTU, respectively. 

      Our design relies on the structure of the H matrix. 

Since the H matrix can be generated using permutations 

(circular shifts) of the identity matrix, we can use circular 

shifts in the design to implement the changing pattern of 

edges from the bit nodes to the check nodes. This scheme, 

as would become clearer later, helps avoid the routing 

problems associated with LDPC decoder design. Our 

design, instead of handling all the edges of a bit / check 

node in a single clock cycle, processes each edge serially. 

The scalable design presented in [6] relies on processing 

each edge of the M parallel set of check nodes in serial, 
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and each edge of M parallel bit nodes in parallel. One of 

the differences in our design is that it processes each edge 

of the parallel bit nodes in a serial instead of a parallel 

fashion.  

Figure 4.  A single check node-processing unit (CNU). 

     Figure 5. A single temporary check node-processing 

unit (CTU) 

In its present state the design implements a (3,6) rate 

half code with p=173. It can be easily seen that the 

dimension of the H matrix is N = 173 * 6 = 1038 and K = 

173 * 3 = 519. Without loss of generality, we present the 

design with the parameters given above. The design can 

be easily changed to accommodate a different set of 

parameters. 

Next we discuss the data flow through the architecture. 

Each one of the FIFOs is 6 locations deep. FIFO1, FIFO2 

and FIFO3 store the edge information for the 1st, 2nd and 

3rd edges of bit node respectively. The output of the -1

lookup table represents the message from the check node 

to the bit node. Looking at the H matrix, the processing 

flow is indicated by Fig. 6. The matrix is processed row 

by row. For the first row (corresponding to 1st through 

K⁄3th check node, connected to the first edges of all bit 

nodes) all the LLR values are summed and stored in the 

CNU. Note that the sub matrices corresponding to this 

first K⁄3 group of check nodes are all identity matrices. 

Hence for this case, we have no shifts. Once the sum is 

computed, it is copied to the CTU, and the messages from 

the check nodes along each one of the six edges to the 

corresponding bit nodes are calculated and stored. This 

final result is the check to bit message along the 1st edge 

of the bit nodes. Similarly 2nd and 3rd row is 

processed.

Figure 6. Process flow through the H matrix. 

The number of clock cycles required for the 

completion of a single iteration is calculated as below. 

The clock cycle associated with the copying of CNU to 

CTU can be avoided at the cost of a longer critical path. If 

the critical path is not a concern, the total clock cycles for 

single iteration can be reduced to 18. 

6. RESULTS 

We coded all our modules using Verilog HDL. We then 

verified RTL model of our decoder using HDL 

simulators. Also we obtained BER performance through 

this RTL model and it corresponded very closely to the C 

simulations. We were able to verify our FPGA 

implementation using the parallel port interface with a PC. 

The array code we chose for implementation had  

Processing of each p rows of H = 6 

Copying CNU to CTU  =  1 

Total per row (t) =  7 

Number of rows (Nr) =  3 

Total clock cycles (k) = Nr * t =  21 

Figure 3. A single bit node-processing unit (BNU). 
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p = 173, row weight = 6, and column weight = 3. Thus, 

ours was a (1038, 519) regular (3, 6) code. Following is a 

table that gives the amount of resources used on Xilinx 

VirtexE XCV2000E FPGA.

Total 

Available 
Used

%

Usage

Slices 19,200 10,883 56 

Slice Flip 

Flops 
3,598 38,400 9 

4-input 

LUTs
19,419 38,400 50 

BRAMs 120 160 79 

With the introduction of a pipeline stage at the 

beginning of the BNU, the maximum clock frequency 

allowable after the synthesis-timing estimate turned out to 

be 43 MHz. However, this dropped to 26.3 MHz (38 ns) 

after a complete placement and routing of the design.  The 

logic delay in this critical path was only 19%, while 

routing took up rest of the 81%. These numbers indicate 

the extent to which routing can become a problem in an 

FPGA design environment even with a relatively regular 

design as ours. Nevertheless even at a clock speed of 26.3 

MHz, we achieved a throughput of 72 Mbps for a total of 

18 iterations. This result is a modest estimate, since a 

higher throughput can be obtained with some additional 

optimizations in the FPGA implementation. The design in 

[4] was able to achieve a throughput of 54 Mbps at 

54MHz. Our design is at least 130% faster in terms of the 

throughput, and though we did not measure the power 

consumed by the decoder, we estimate that our design 

would consume 50% less power, since we run the clock at 

26 MHz. 
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