
FPGA Based Implementation of Decoder for Array Low-Density Parity-Check Codes

 Pankaj Bhagawat Momin Uppal Gwan Choi, Member IEEE

Texas A&M University Texas A&M University Texas A&M University

ABSTRACT

In the past few years, the Low Density Parity Check

(LDPC) codes have received lot of attention for their

excellent performance, and inherent parallelism involved

in decoding them. In this work we consider a type of

structured binary LDPC codes known as array LDPC

codes, which have low encoding complexity and good

performance, for implementation on Xilinx Field

Programmable Gate Array (FPGA) device.

1. INTRODUCTION

A basic communication system is composed of three

parts: a transmitter, channel, and receiver. Transmitted

information becomes altered due to noise corruption and

channel distortion. To account for these errors,

redundancy is intentionally introduced, and the receiver

uses a decoder to make corrections. In error-correcting

control (ECC), it is important to have a high code rate

while maintaining low complexity.

 It’s a well-known fact that the LDPC codes can

achieve information rates very close to the Shannon limit

when iteratively decoded [1]. LDPC decoders are also

known to have arithmetic computations requirement that

is an order of magnitude less than Turbo decoders [2] that

provide similar bit-error rate (BER) performance.

Furthermore, algorithms for decoding LDPC codes also

have the advantage of being inherently parallel. In

principle, this permits exploiting the common approach of

using multiple parallel processing elements to increase the

throughput of the decoder. As far as hardware

implementation of the decoder is concerned, however, the

exploitation of parallelism is a serious challenge. This is

due to the immense complexity of the interconnects

between the processing elements.

 This paper discusses the implementation of array

based LDPC codes (ALDPC). We successfully show that

the ALDPC codes can be efficiently implemented using a

partly parallel architecture [4]. Beyond just bit-error rate

(BER) performance the objective is to demonstrate

simplicity, and high efficiency of the hardware due to the

structure imposed on the code.

2. REVIEW OF LDPC CODES

The LDPC code is a class of parity check codes, which

can be fully defined by a parity–check matrix H. To be

specific, it is defined as the null space of a very sparse

MxN parity check matrix H, an LDPC code is represented

by a bipartite graph, called Tanner graph (see fig. 1), in

which one set of N bit or variable nodes corresponds to

the set of codeword, another set of M check nodes

corresponds to the set of parity check constraints and

each edge corresponds to a non-zero entry in the parity

check matrix H.

Figure 1. Tanner graph representation of LDPC code.

 Effective decoding of LDPC codes can be done by

an iterative algorithm called belief-propagation (BP) (also

known as sum-product). The structure of BP decoding

algorithm directly matches the Tanner graph, and in

principle, enables us to make use of the parallelism.

Unfortunately, randomly constructed LDPC codes entail a

random layout of the interconnects between variable and

check nodes. This makes the exploitation of parallelism

very difficult because of limited routing resources

available. For instance, a decoder based on direct mapping

of BP algorithm is presented in [3], for a relatively short

code this design uses up 50% of the chip area just for

routing the messages. This is only going to get worse as

the code length increases.

 In this paper we make use of the partly parallel

architecture for a special class of LDPC codes called

ALDPC. The structure of ALDPC codes is one of the best

suited for partly parallel architecture. Using ALDPC

codes greatly simplifies the routing complexity, thus

making is suitable for implementation on an FPGA

device.

V - 290-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

3. ARRAY BASED LOW DENSITY PARITY

CHECK CODES

The H matrix based on array codes is different from the

usual H matrices. It can be represented as follows [5].

 Where I is a p x p identity matrix with a prime

number p. The dimensions of the matrix are N x K = jp x

kp with integers pkj, . is a permutation matrix

with a single cyclic right shift or left shift. For p = 5

resultant is displayed below.

 Efficient encoding, minimum distance properties

and good performance of ALDPC codes have been shown

in [5]. Array codes have almost the same BER

performance as randomly generated codes when an inter-

leaver is used between the encoder and the channel. Array

codes have a quasi-cyclic structure that can be exploited

to greatly reduce the hardware complexity of the decoder

maintaining comparable error rate and throughput at the

same time. This makes it a very attractive candidate for

high-density storage applications. In addition, by dividing

the H matrix into multiple identity/permutation matrices

the interconnections become localized thus lowering the

routing complexity.

4. DECODING THE LDPC CODES

Belief Propagation algorithm has been described in

numerous articles before. Here we merely represent the

BP algorithm [4]. Following steps summarize the BP

algorithm:

1. Initialize each variable node with the intrinsic (or

channel) information, and from this compute the variable-

to-check message.

2. Pass the variable-to-check message from variable

nodes to check nodes along the edges of Tanner graph.

3. At each check node generate the check-to-variable

message using all incoming messages from the incident

variable nodes.

4. Pass the check-to-variable message from check nodes

to variable nodes along the edges of Tanner graph.

5. At each variable node update the estimate of the

corresponding bit (using the incoming message and

intrinsic information) and compute the outgoing variable

to check message.

6. Repeat steps 2-5 until, either a valid codeword is

reached or a fixed number of iterations have been

performed.

 It’s easier to perform arithmetic on hardware when

messages are in log domain. All the messages are in fact

log likelihood ratios (LLR). In our work all the messages

have 4-bit precision.

5. DECODER ARCHITECTURE

The basic architecture of this design is shown in Fig.2. (In

the figure B represents bit node, and C represents check

node).

Figure 2. Basic Architecture of the decoder

 The implemented decoder consists of three basic units

shown in Figs. 3 to 5. We call them the Bit node (Variable

node), Check node, and the Temporary check node units.

From here on, these blocks will be referred to as BNU,

CNU and CTU, respectively.

 Our design relies on the structure of the H matrix.

Since the H matrix can be generated using permutations

(circular shifts) of the identity matrix, we can use circular

shifts in the design to implement the changing pattern of

edges from the bit nodes to the check nodes. This scheme,

as would become clearer later, helps avoid the routing

problems associated with LDPC decoder design. Our

design, instead of handling all the edges of a bit / check

node in a single clock cycle, processes each edge serially.

The scalable design presented in [6] relies on processing

each edge of the M parallel set of check nodes in serial,

CONTROL UNIT

B

B C

C

CR

E

G

I

S

T

E

R

S

R

E

G

I

S

T

E

R

S

B

)1)(1()1(21

)1(242

12

kjjj

k

k

I

I

I

IIII

H

00010

00001

10000

01000

00100

V - 30

➡ ➡

and each edge of M parallel bit nodes in parallel. One of

the differences in our design is that it processes each edge

of the parallel bit nodes in a serial instead of a parallel

fashion.

Figure 4. A single check node-processing unit (CNU).

 Figure 5. A single temporary check node-processing

unit (CTU)

In its present state the design implements a (3,6) rate

half code with p=173. It can be easily seen that the

dimension of the H matrix is N = 173 * 6 = 1038 and K =

173 * 3 = 519. Without loss of generality, we present the

design with the parameters given above. The design can

be easily changed to accommodate a different set of

parameters.

Next we discuss the data flow through the architecture.

Each one of the FIFOs is 6 locations deep. FIFO1, FIFO2

and FIFO3 store the edge information for the 1st, 2nd and

3rd edges of bit node respectively. The output of the -1

lookup table represents the message from the check node

to the bit node. Looking at the H matrix, the processing

flow is indicated by Fig. 6. The matrix is processed row

by row. For the first row (corresponding to 1st through

K⁄3th check node, connected to the first edges of all bit

nodes) all the LLR values are summed and stored in the

CNU. Note that the sub matrices corresponding to this

first K⁄3 group of check nodes are all identity matrices.

Hence for this case, we have no shifts. Once the sum is

computed, it is copied to the CTU, and the messages from

the check nodes along each one of the six edges to the

corresponding bit nodes are calculated and stored. This

final result is the check to bit message along the 1st edge

of the bit nodes. Similarly 2nd and 3rd row is

processed.

Figure 6. Process flow through the H matrix.

The number of clock cycles required for the

completion of a single iteration is calculated as below.

The clock cycle associated with the copying of CNU to

CTU can be avoided at the cost of a longer critical path. If

the critical path is not a concern, the total clock cycles for

single iteration can be reduced to 18.

6. RESULTS

We coded all our modules using Verilog HDL. We then

verified RTL model of our decoder using HDL

simulators. Also we obtained BER performance through

this RTL model and it corresponded very closely to the C

simulations. We were able to verify our FPGA

implementation using the parallel port interface with a PC.

The array code we chose for implementation had

Processing of each p rows of H = 6

Copying CNU to CTU = 1

Total per row (t) = 7

Number of rows (Nr) = 3

Total clock cycles (k) = Nr * t = 21

Figure 3. A single bit node-processing unit (BNU).

V - 31

➡ ➡

p = 173, row weight = 6, and column weight = 3. Thus,

ours was a (1038, 519) regular (3, 6) code. Following is a

table that gives the amount of resources used on Xilinx

VirtexE XCV2000E FPGA.

Total

Available
Used

%

Usage

Slices 19,200 10,883 56

Slice Flip

Flops
3,598 38,400 9

4-input

LUTs
19,419 38,400 50

BRAMs 120 160 79

With the introduction of a pipeline stage at the

beginning of the BNU, the maximum clock frequency

allowable after the synthesis-timing estimate turned out to

be 43 MHz. However, this dropped to 26.3 MHz (38 ns)

after a complete placement and routing of the design. The

logic delay in this critical path was only 19%, while

routing took up rest of the 81%. These numbers indicate

the extent to which routing can become a problem in an

FPGA design environment even with a relatively regular

design as ours. Nevertheless even at a clock speed of 26.3

MHz, we achieved a throughput of 72 Mbps for a total of

18 iterations. This result is a modest estimate, since a

higher throughput can be obtained with some additional

optimizations in the FPGA implementation. The design in

[4] was able to achieve a throughput of 54 Mbps at

54MHz. Our design is at least 130% faster in terms of the

throughput, and though we did not measure the power

consumed by the decoder, we estimate that our design

would consume 50% less power, since we run the clock at

26 MHz.

7. REFERENCES

[1] D. J. C. Mackay and R. M. Neal, “Near Shannon limit

performance of low density parity check codes,” IEE Electronics

Letters, vol.33, no.6, pp.457-458, Mar. 1997.

[2] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, "VLSI

architectures for iterative decoders in magnetic recording

channels," IEEE Trans. Magnetics, vol.37, no.2, pp. 748-755,

Mar. 2001.

[3] A. J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-

b, Rate-1/2 Low-Density Parity-Check Code Decoder”, IEEE J.

Solid-State Circuits, Vol.37, 2002, pp. 404-412.

[4] T. Zhang and K. K. Parhi, “An FPGA Implementation of

(3,6)-Regular Low-Density Parity-Check Code Decoder”,

EURASIP Journal on Applied Signal Processing, special issue

on Rapid Prototyping of DSP Systems, May 2003 vol. 2003, no.

6, pp. 530-542.

[5] E. Eleftheriou and S. Olcer, “Low density parity-check

codes for digital subscriber lines”, Proc. ICC’2002, New

York, pp.1752-1757(2002).

[6] A. Selvarathinam, G. Choi, A. Prabhakar, K.

Narayanan, and E. Kim, “A massively scaleable decoder

architecture for low-density parity-check codes”,

Proceedings of International Symposium on Circuits and

Systems, May 2003, vol.2, pp.61-64

V - 32

➡ ➠

