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ABSTRACT

This paper presents a high performance turbo decoder. Its 
major building blocks, the maximum-a-posteriori decoder 
and the interleaver, are optimized from architecture to layout 
level to achieve high-throughput at low-power. This 
includes a novel architecture for parallel interleaving, that 
sustains any interleaving scheme. Moreover, the key 
features of the major building blocks are analyzed and 
modeled for quick design space exploration e.g. achieving 
760Mb/s at 570mW in a 0.13 � m-CMOS-technology. 
Finally, the characterized implementations are 
benchmarked.  

1. INTRODUCTION

With the advent of turbo codes in 1993 for the first time a 
feasible channel coding technique was available which 
almost reaches the Shannon limit [1]. Today turbo codes 
are used in 3rd generation mobile radio telephone services 
(3GPP) at a rather moderate throughput of 2 Mb/s. 
However upcoming applications in wireless and wireline 
communication systems as well as magnetic recording 
operate at much higher data rates of up to several Gb/s. 
These applications require new architectures that speed-up 
the decoding operation at low-power and reasonable 
silicon area.  

The principle block diagram of a turbo decoder for 
parallel concatenated convolutional codes is shown in Fig. 
1 The maximum a posteriori (MAP) algorithm is applied 
recursively to input symbols rsys, rpar,i and extrinsic 
information Li,ext, which is scrambled by interleavers and 
deinterleavers referred to as π and π-1. High-throughput 
turbo decoding not only demands for an appropriate MAP 
decoder implementation but also for a matching 
interleaver architecture. 

This paper presents a high performance turbo decoder 
implementation approach and analyzes key features of the 
major building blocks in a 0.13 � m CMOS technology. 
The following section sketches architectures suitable for 
high-throughput turbo decoding. Section 3 presents a 
novel parallel interleaver architecture. Architectural, 

circuit and layout level optimization of the MAP unit is 
described in section 4. Finally in the last section the results 
of parameterized power, area and performance models are 
summarized and compared to those of other leading edge 
implementations known in literature.  

Fig. 1: Principle block diagram of a turbo decoder . 

2. HIGH-PERFORMANCE ARCHITECTURES FOR TURBO-
DECODING

For high throughput decoding there are basically two 
approaches: either the recursive decoding loop can be 
unrolled (serial approach) or parallelism is introduced 
within the MAP decoders (parallel approach). 

In a serial architecture the whole decoder resources 
including memories are duplicated  resulting in a large 
silicon area. On the contrary, a parallel architecture makes 
use of a single parallel MAP decoder unit which executes 
both decoding steps MAP1 and MAP2 associated with one 
turbo decoding iteration sequentially in time. Moreover, a 
parallel approach has the advantage that it reduces 
decoding latency significantly. However, it requires a 
parallel interleaver circuitry. To save area it can be used 
alternately as interleaver and deinterleaver, respectively. 

Parallel MAP decoding is made possible by the sliding 
window principle [2]. According to this approach, state 
metric calculation can be started at an arbitrary position 
within the block. Therefore N sub-blocks of size K/N can be 
processed concurrently by N so-called workers [3]. To 
reduce memory capacity inside the workers, sub-blocks can 
in turn be divided into smaller units of size W, called 
windows, which are sequentially processed [4]. A 
corresponding parallel architecture with sub-blocks and 
windowing scheme is shown in Fig. 2. Here, each worker 
determines branch metrics and calculates forward and  
backward metrics for all S states in parallel (solid lines). 
Further each worker produces one extrinsic information 
symbol per cycle (thick line). As the worker unit itself is 
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organized as a single-flow MAP decoder with window size 
W optimized for low memory requirement [5], it only 
utilizes two memory banks of size 2W for branch metric 
storage (hatching) and one memory bank of size S×W for 
state metric storage (double hatch). 

Fig. 2: Windowing scheme of a parallel MAP decoder (N=4). 

3. DESIGN OF A PARALLEL INTERLEAVER

When extrinsic information is exchanged between adjacent 
MAP decoding steps, its data sequence has to be permuted 
according to the interleaving scheme and is stored in a 
memory until the subsequent MAP decoding step begins. 
In a parallel decoder architecture N symbols of extrinsic 
information are produced in parallel and have to be written 
into N memory banks corresponding to N worker units of 
the succeeding MAP operation. Thereby conflicts in 
memory access appear whenever two or more workers try 
to write into the same memory bank.  

The complete output data block of the parallel MAP 
decoder can be represented by a matrix (s. Fig. 3), where 
each row holds data symbols of the corresponding worker 
of successive operations. Every symbol produced by the 
MAP-1 decoder is mapped onto a distinct position of the 
input data matrix for the following MAP-2 decoding stage 
according to the interleaving scheme. 

To understand the underlying concept of the 
interleaver it is important to point out that parallel 
interleaving of a data block resembles a one-to-one routing 
problem on a two dimensional grid. This problem is well-
known in parallel computing theory and can be solved in 
three distinct routing steps [6]: 
1. a permutation of all elements within each column, 
2. a permutation of all elements within each row, and 
3. a permutation of all elements within each column. 

Moreover, an algorithm to determine these routing 
steps is known [6] which provides a solution for any
interleaving scheme. A parallel interleaver architecture 
based on these three routing phases requires routing 
networks to implement permutations of all elements within 
each column (s. Fig. 3). The networks in Fig. 3 feature 

collision-free routing of N inputs to N outputs. In contrast, 
permutations of elements within each row are mapped on 
the memory accesses within each of the N memory banks.  

Fig. 3: Architecture of a parallel interleaver comprising two 
routing networks (column permutations) and N memory banks 
(row permutations). (Indices of elements refer to their target: 
row,column.) 

The Beneš network is well suited for collision-free 
routing because of its minimal number of stages. 
Additionally, the network's regularity and relatively good 
locality can be exploited by the physically oriented design 
approach of [7] to reduce the power dissipation. Its layout 
for N=16 is shown in Fig. 4. Its throughput can be scaled 
by pipelining the network and memory accesses, 
respectively. 

Fig. 4: Layout of Beneš network for N=16 (boxes depict the 
recursive composition with network cores for N=8 and N=4, 
respectively). 

4. OPTIMIZATION OF THE PARALLEL MAP 

During MAP decoding state metrics for all S states of the 
convolutional code are computed in parallel. Due to the non-
linear nature of state metric computation the time-critical 
path of the MAP unit is situated in the so-called add-
compare-select-add (ACSA) unit, which determines state 
metrics according to the log-MAP algorithm [9]. A 
processor element (PE) that computes one state metric is 
shown in Fig. 5a. It consists of an add-compare-select unit 
as used for the Viterbi algorithm. Additionally, a variable 
correction factor is needed to approximate the Jacobian 
logarithm. Typically this operation is realized by a look-up 
table (LUT) and an extra adder stage. 

4.1 Logical Optimization 

The complexity of the correction factor circuitry can be 
drastically reduced by using the constant-log-MAP 
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algorithm [10]. It features nearly identical bit error rate 
performance as the exact log-MAP algorithm and a 0.3 dB 
better performance than the simplified max-log-MAP 
algorithm. In this case the look-up table can be implemented 
solely by two logic stages leading to a regular structure of 
small area as well as low power  (s. Fig. 6). 

Fig. 5: Signal flow diagram of ACSA (a) and AACS (b) processor 
element (time-critical path is depicted by a dotted line). 

In order to reduce the time critical path the last adder 
stage can be pushed by retiming to the input (s. Fig. 5b). 
Due to the nesting of carry-ripple additions the total delay 
of the add-add-compare-select (AACS) PE is decreased to 

( ) FACRAAACS w τττ ⋅+= 2 ,   (1) 

where ( )wCRAτ  is the delay of a w bit carry-ripple adder 
and FAτ  that of a single full-adder. A further reduction of 
τAACS is possible using carry-select-adders at the cost of 
significantly increased area and power consumption.  

4.2 Circuit Implementation 

Low power carry-ripple-adders have been implemented 
using  highly efficient mirror full-adder cells with output 
buffers as well as gate-based half-adder cells with minimum 
sized gates. In order to further decrease the delay of the 
time-critical path several optimization steps have been 
applied. Optimizing the carry path by applying the sizing 
approach of [7] to dedicated transistor stacks reduced 
propagation delay by about 25% while area and power 
dissipation remained almost constant (AACS type 1, Fig.6).  
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Fig. 6: Layout of AACS PE (box depicts circuitry for correction 
factor) and Energy per Cycle for different PEs. 

Subsequently, by also optimizing the sum path of the 
adder the delay could further be reduced by 16%, while the 
increase in area and power dissipation is still negligible 
(AACS type 2). Finally a mirror full-adder without output 
buffers was used. Again the device dimensions were 
optimized and a minimum cycle time of 3.7ns was reached. 

5. PERFORMANCE MODELS AND BENCHMARKING

Turbo decoder implementations using the presented 
parallel interleaver architecture can be adapted to a wide 
range of high throughputs. In this section an architecture 
comprising the parallel MAP decoder depicted in Fig. 2 
and the proposed parallel interleaver is analyzed for 
various parameter sets.  

The data rate R is a function of the parameters block 
size K, window size W, number of turbo iterations I, 
number of parallel workers N and clock frequency f
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⋅= .   (2) 

Decoding latency L can be determined as

f
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N
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I

L
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= .   (3) 

As K, W and I influence decoding performance they 
are usually kept constant. Consequently, both data rate R
and decoding latency L can be improved by increasing the 
number of parallel workers N or clock frequency f without 
influencing decoding performance. As presented in the 
previous sections, N can be altered on architecture level 
using the novel parallel interleaver while f can be 
increased by appropriate optimization on circuit and 
layout level while preserving low-power and small area. 

In order to evaluate the proposed approach all delay, 
power and area critical components were laid out and 
characterized. Timing simulations assume worst case 
corner and conditions while power simulations are based 
on the typical case. From the characterized features of the 
individual building blocks conservative models for 
achievable throughput, power dissipation, and silicon area 
were derived. The figures comprise all interconnects, logic 
and memory blocks of the MAP decoder and the 
interleaving network. The models are parameterized with 
respect to the degree of parallelism and the clock 
frequency. 

In Fig. 7 the silicon area A and sample period T of 
different parameter sets are shown in the AT-space. An 
“ideally” scaling architecture would feature a constant AT-
product (dotted hyperbola), whereas the presented 
architecture shows a significantly decreasing  AT-product 
for reasonable increases in the degree of parallelism N
This is due to the fact that with increased data rates R
(increased N) the parallel architecture does not need any 
additional memory and the memory blocks are divided 
into even smaller portions. As can be seen in Fig. 7, at 
some points of the design space it is advantageous to 
increase clock frequency f by circuit level optimization 
instead of N (e.g. Tsample≈6ns). Apparently neither 
parallelism nor sizing alone leads to the optimal solution 
in general [7]. To find the proper trade-off it is important 
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to account for all parameters in the design space. 
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Fig. 7: AT-complexity of turbo decoders in comparison to 
published results for K=5120, W=32, I=6, S=8 with the 
exception of implementations marked with *. (3) features K=423 
and an early stopping criterion. (12) requires dividable 
interleaving schemes, its block size K  was scaled to 5120. 

In order to benchmark the presented architecture, 
silicon area, throughput and power dissipation of 
implementations [3], [4], [12] were scaled to a 0.13 µm 
technology. As shown in Fig. 7 our approach requires 
40%-65% less silicon area compared to other leading edge 
implementations. Further it enables higher data rates at 
relatively small area.  
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Fig. 8: Normalized energy per decoded bit vs. normalized AT-
complexity for K=5120, W=32, I=6, S=8 (apart from *).  

ESTIMATED KEY FEATURES OF TURBO DECODER 
Data rate R / Mb/s 121 284 758 

Latency L / µs 42.2 18.0 10.5 

P / mW 76 178 573 

Ebit / nJ 0.62 0.66 0.76 

A / mm2 3.1 4.5 13.1 

f / MHz 200 256 256 

N 8 16 64 

K / W / I / S 5120 / 32 / 6 / 8 

wα/γ / bit 10 / 7 

Lg / µm / VDD / V 0.13 / 1.2 

Finally, the implementations are compared with 
respect to their normalized energy conversion per decoded 
bit. For this purpose energy was scaled to a 0.13µm 
technology: E~Vdd

2 � Lg
0.75. Fig. 8 highlights the typical 

trade-off between AT-complexity and energy conversion, 
when additional area is used to reduce power 
consumption. Even further power savings are possible 
using an early stopping criterion and dividable interleaving 
schemes, as in [3] and [12]. In the latter, the data would 
pass the interleaver network only once.  

6. CONCLUSION

In this paper a scalable implementation approach for low-
power turbo decoders is presented suitable for throughputs 
of several 100 Mb/s. It features a novel parallel general 
purpose interleaver and an ACSA unit optimized on 
logical and circuit level for high throughput and low-
power. With this turbo decoder a data rate of up to 
760 Mb/s is feasible with a silicon area of 13 mm2 and  
power dissipation of 570 mW in a 0.13 µm CMOS 
technology.  
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