
A PARAMETRIZABLE LOW-POWER HIGH-THROUGHPUT TURBO-DECODER

Gordian Prescher, Tobias Gemmeke and Tobias G. Noll

 Chair of Electrical Engineering and Computer Systems, RWTH Aachen University, Germany
{prescher,tgn}@eecs.rwth-aachen.de gemmeke@ieee.org

ABSTRACT

This paper presents a high performance turbo decoder. Its
major building blocks, the maximum-a-posteriori decoder
and the interleaver, are optimized from architecture to layout
level to achieve high-throughput at low-power. This
includes a novel architecture for parallel interleaving, that
sustains any interleaving scheme. Moreover, the key
features of the major building blocks are analyzed and
modeled for quick design space exploration e.g. achieving
760Mb/s at 570mW in a 0.13 � m-CMOS-technology.
Finally, the characterized implementations are
benchmarked.

1. INTRODUCTION

With the advent of turbo codes in 1993 for the first time a
feasible channel coding technique was available which
almost reaches the Shannon limit [1]. Today turbo codes
are used in 3rd generation mobile radio telephone services
(3GPP) at a rather moderate throughput of 2 Mb/s.
However upcoming applications in wireless and wireline
communication systems as well as magnetic recording
operate at much higher data rates of up to several Gb/s.
These applications require new architectures that speed-up
the decoding operation at low-power and reasonable
silicon area.

The principle block diagram of a turbo decoder for
parallel concatenated convolutional codes is shown in Fig.
1 The maximum a posteriori (MAP) algorithm is applied
recursively to input symbols rsys, rpar,i and extrinsic
information Li,ext, which is scrambled by interleavers and
deinterleavers referred to as π and π-1. High-throughput
turbo decoding not only demands for an appropriate MAP
decoder implementation but also for a matching
interleaver architecture.

This paper presents a high performance turbo decoder
implementation approach and analyzes key features of the
major building blocks in a 0.13 � m CMOS technology.
The following section sketches architectures suitable for
high-throughput turbo decoding. Section 3 presents a
novel parallel interleaver architecture. Architectural,

circuit and layout level optimization of the MAP unit is
described in section 4. Finally in the last section the results
of parameterized power, area and performance models are
summarized and compared to those of other leading edge
implementations known in literature.

Fig. 1: Principle block diagram of a turbo decoder .

2. HIGH-PERFORMANCE ARCHITECTURES FOR TURBO-
DECODING

For high throughput decoding there are basically two
approaches: either the recursive decoding loop can be
unrolled (serial approach) or parallelism is introduced
within the MAP decoders (parallel approach).

In a serial architecture the whole decoder resources
including memories are duplicated resulting in a large
silicon area. On the contrary, a parallel architecture makes
use of a single parallel MAP decoder unit which executes
both decoding steps MAP1 and MAP2 associated with one
turbo decoding iteration sequentially in time. Moreover, a
parallel approach has the advantage that it reduces
decoding latency significantly. However, it requires a
parallel interleaver circuitry. To save area it can be used
alternately as interleaver and deinterleaver, respectively.

Parallel MAP decoding is made possible by the sliding
window principle [2]. According to this approach, state
metric calculation can be started at an arbitrary position
within the block. Therefore N sub-blocks of size K/N can be
processed concurrently by N so-called workers [3]. To
reduce memory capacity inside the workers, sub-blocks can
in turn be divided into smaller units of size W, called
windows, which are sequentially processed [4]. A
corresponding parallel architecture with sub-blocks and
windowing scheme is shown in Fig. 2. Here, each worker
determines branch metrics and calculates forward and
backward metrics for all S states in parallel (solid lines).
Further each worker produces one extrinsic information
symbol per cycle (thick line). As the worker unit itself is

d
rsys

rpar,1

π−1

π

L2,ext

L1,ext

π−1
rpar,2

MAP2 MAP1

V - 250-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

organized as a single-flow MAP decoder with window size
W optimized for low memory requirement [5], it only
utilizes two memory banks of size 2W for branch metric
storage (hatching) and one memory bank of size S×W for
state metric storage (double hatch).

Fig. 2: Windowing scheme of a parallel MAP decoder (N=4).

3. DESIGN OF A PARALLEL INTERLEAVER

When extrinsic information is exchanged between adjacent
MAP decoding steps, its data sequence has to be permuted
according to the interleaving scheme and is stored in a
memory until the subsequent MAP decoding step begins.
In a parallel decoder architecture N symbols of extrinsic
information are produced in parallel and have to be written
into N memory banks corresponding to N worker units of
the succeeding MAP operation. Thereby conflicts in
memory access appear whenever two or more workers try
to write into the same memory bank.

The complete output data block of the parallel MAP
decoder can be represented by a matrix (s. Fig. 3), where
each row holds data symbols of the corresponding worker
of successive operations. Every symbol produced by the
MAP-1 decoder is mapped onto a distinct position of the
input data matrix for the following MAP-2 decoding stage
according to the interleaving scheme.

To understand the underlying concept of the
interleaver it is important to point out that parallel
interleaving of a data block resembles a one-to-one routing
problem on a two dimensional grid. This problem is well-
known in parallel computing theory and can be solved in
three distinct routing steps [6]:
1. a permutation of all elements within each column,
2. a permutation of all elements within each row, and
3. a permutation of all elements within each column.

Moreover, an algorithm to determine these routing
steps is known [6] which provides a solution for any
interleaving scheme. A parallel interleaver architecture
based on these three routing phases requires routing
networks to implement permutations of all elements within
each column (s. Fig. 3). The networks in Fig. 3 feature

collision-free routing of N inputs to N outputs. In contrast,
permutations of elements within each row are mapped on
the memory accesses within each of the N memory banks.

Fig. 3: Architecture of a parallel interleaver comprising two
routing networks (column permutations) and N memory banks
(row permutations). (Indices of elements refer to their target:
row,column.)

The Beneš network is well suited for collision-free
routing because of its minimal number of stages.
Additionally, the network's regularity and relatively good
locality can be exploited by the physically oriented design
approach of [7] to reduce the power dissipation. Its layout
for N=16 is shown in Fig. 4. Its throughput can be scaled
by pipelining the network and memory accesses,
respectively.

Fig. 4: Layout of Beneš network for N=16 (boxes depict the
recursive composition with network cores for N=8 and N=4,
respectively).

4. OPTIMIZATION OF THE PARALLEL MAP

During MAP decoding state metrics for all S states of the
convolutional code are computed in parallel. Due to the non-
linear nature of state metric computation the time-critical
path of the MAP unit is situated in the so-called add-
compare-select-add (ACSA) unit, which determines state
metrics according to the log-MAP algorithm [9]. A
processor element (PE) that computes one state metric is
shown in Fig. 5a. It consists of an add-compare-select unit
as used for the Viterbi algorithm. Additionally, a variable
correction factor is needed to approximate the Jacobian
logarithm. Typically this operation is realized by a look-up
table (LUT) and an extra adder stage.

4.1 Logical Optimization

The complexity of the correction factor circuitry can be
drastically reduced by using the constant-log-MAP

N memory banks
[after step (1), (2)]

output block
 of MAP1

4,1

3,3

2,3

1,1

2,2 1,3

input block
to MAP2

3,1 2,3 4,1 4,2 4,3

routing
network

routing
network

4,2

2,1

4,3

3,1

1,2

3,2

1,2 2,12,2

1,3 4,2 1,1

3,2 4,1 3,3

1,1 1,2 1,3

2,12,2 2,3

3,1 3,2 3,3

4,3

calculation:
 state metric
 dummy metric
 extrinsic info.

storage:
 brach metric
 state metric

K/N

K

worker

worker

worker

worker

time

W

parallel MAP

V - 26

➡ ➡

algorithm [10]. It features nearly identical bit error rate
performance as the exact log-MAP algorithm and a 0.3 dB
better performance than the simplified max-log-MAP
algorithm. In this case the look-up table can be implemented
solely by two logic stages leading to a regular structure of
small area as well as low power (s. Fig. 6).

Fig. 5: Signal flow diagram of ACSA (a) and AACS (b) processor
element (time-critical path is depicted by a dotted line).

In order to reduce the time critical path the last adder
stage can be pushed by retiming to the input (s. Fig. 5b).
Due to the nesting of carry-ripple additions the total delay
of the add-add-compare-select (AACS) PE is decreased to

() FACRAAACS w τττ ⋅+= 2 , (1)

where ()wCRAτ is the delay of a w bit carry-ripple adder
and FAτ that of a single full-adder. A further reduction of
τAACS is possible using carry-select-adders at the cost of
significantly increased area and power consumption.

4.2 Circuit Implementation

Low power carry-ripple-adders have been implemented
using highly efficient mirror full-adder cells with output
buffers as well as gate-based half-adder cells with minimum
sized gates. In order to further decrease the delay of the
time-critical path several optimization steps have been
applied. Optimizing the carry path by applying the sizing
approach of [7] to dedicated transistor stacks reduced
propagation delay by about 25% while area and power
dissipation remained almost constant (AACS type 1, Fig.6).

 3 5 7 9
600

800

1000

1200

T
cyc

/ns

E
cyc

/nJ ACSA
AACS type 1
AACS type 2

sizing

Fig. 6: Layout of AACS PE (box depicts circuitry for correction
factor) and Energy per Cycle for different PEs.

Subsequently, by also optimizing the sum path of the
adder the delay could further be reduced by 16%, while the
increase in area and power dissipation is still negligible
(AACS type 2). Finally a mirror full-adder without output
buffers was used. Again the device dimensions were
optimized and a minimum cycle time of 3.7ns was reached.

5. PERFORMANCE MODELS AND BENCHMARKING

Turbo decoder implementations using the presented
parallel interleaver architecture can be adapted to a wide
range of high throughputs. In this section an architecture
comprising the parallel MAP decoder depicted in Fig. 2
and the proposed parallel interleaver is analyzed for
various parameter sets.

The data rate R is a function of the parameters block
size K, window size W, number of turbo iterations I,
number of parallel workers N and clock frequency f

)2(2 W
N

K
I

fK
R

⋅+⋅⋅

⋅= . (2)

Decoding latency L can be determined as

f

W
N

K
I

L
)2(2 ⋅+⋅

= . (3)

As K, W and I influence decoding performance they
are usually kept constant. Consequently, both data rate R
and decoding latency L can be improved by increasing the
number of parallel workers N or clock frequency f without
influencing decoding performance. As presented in the
previous sections, N can be altered on architecture level
using the novel parallel interleaver while f can be
increased by appropriate optimization on circuit and
layout level while preserving low-power and small area.

In order to evaluate the proposed approach all delay,
power and area critical components were laid out and
characterized. Timing simulations assume worst case
corner and conditions while power simulations are based
on the typical case. From the characterized features of the
individual building blocks conservative models for
achievable throughput, power dissipation, and silicon area
were derived. The figures comprise all interconnects, logic
and memory blocks of the MAP decoder and the
interleaving network. The models are parameterized with
respect to the degree of parallelism and the clock
frequency.

In Fig. 7 the silicon area A and sample period T of
different parameter sets are shown in the AT-space. An
“ideally” scaling architecture would feature a constant AT-
product (dotted hyperbola), whereas the presented
architecture shows a significantly decreasing AT-product
for reasonable increases in the degree of parallelism N
This is due to the fact that with increased data rates R
(increased N) the parallel architecture does not need any
additional memory and the memory blocks are divided
into even smaller portions. As can be seen in Fig. 7, at
some points of the design space it is advantageous to
increase clock frequency f by circuit level optimization
instead of N (e.g. Tsample≈6ns). Apparently neither
parallelism nor sizing alone leads to the optimal solution
in general [7]. To find the proper trade-off it is important

LUT

-

LUTα0
k-1

α1
k-1 α0

k

l0k

γ1
k

-α`1
k-1

α`0

γ1
k

l0kγ0
k γ0

k

l1k

l0kα`0
k-1

(b) (a)

M
U
X

M
U
X

+

+

++
+ + +

+ +

V - 27

➡ ➡

to account for all parameters in the design space.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

T
sample

/ns

A/mm2

(4)

(4)

(4)

(12)*

(3)*

N=64

N=32

N=16

N=8
N=4

Fig. 7: AT-complexity of turbo decoders in comparison to
published results for K=5120, W=32, I=6, S=8 with the
exception of implementations marked with *. (3) features K=423
and an early stopping criterion. (12) requires dividable
interleaving schemes, its block size K was scaled to 5120.

In order to benchmark the presented architecture,
silicon area, throughput and power dissipation of
implementations [3], [4], [12] were scaled to a 0.13 µm
technology. As shown in Fig. 7 our approach requires
40%-65% less silicon area compared to other leading edge
implementations. Further it enables higher data rates at
relatively small area.

0 1 2 3 4
0

2

4

6

8

10

12

(A×T)norm

E bit,norm

(12)

(4)

this work

(3)*

Fig. 8: Normalized energy per decoded bit vs. normalized AT-
complexity for K=5120, W=32, I=6, S=8 (apart from *).

ESTIMATED KEY FEATURES OF TURBO DECODER
Data rate R / Mb/s 121 284 758

Latency L / µs 42.2 18.0 10.5

P / mW 76 178 573

Ebit / nJ 0.62 0.66 0.76

A / mm2 3.1 4.5 13.1

f / MHz 200 256 256

N 8 16 64

K / W / I / S 5120 / 32 / 6 / 8

wα/γ / bit 10 / 7

Lg / µm / VDD / V 0.13 / 1.2

Finally, the implementations are compared with
respect to their normalized energy conversion per decoded
bit. For this purpose energy was scaled to a 0.13µm
technology: E~Vdd

2 � Lg
0.75. Fig. 8 highlights the typical

trade-off between AT-complexity and energy conversion,
when additional area is used to reduce power
consumption. Even further power savings are possible
using an early stopping criterion and dividable interleaving
schemes, as in [3] and [12]. In the latter, the data would
pass the interleaver network only once.

6. CONCLUSION

In this paper a scalable implementation approach for low-
power turbo decoders is presented suitable for throughputs
of several 100 Mb/s. It features a novel parallel general
purpose interleaver and an ACSA unit optimized on
logical and circuit level for high throughput and low-
power. With this turbo decoder a data rate of up to
760 Mb/s is feasible with a silicon area of 13 mm2 and
power dissipation of 570 mW in a 0.13 µm CMOS
technology.

7. REFERENCES

[1] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo-Codes,"
IEEE Int. Conf. on Communications, vol. 2, pp. 1064-1070, 1993.
[2] K.-H. Tzou and J. G. Dunham, “Sliding Block Decoding of
Convolutional Codes,” IEEE Trans. Commun., Vol. 29, No. 9, pp.
1401-1403, Sep. 1981.
[3] A. Giulietti et al, "A 80 Mb/s low-power scalable turbo codec
core," Proc. CICC, pp. 389-392, 2002.
[4] M. J. Thul et al, "A scalable system architecture for high-
throughput turbo-decoders," Kluwer Journal VLSI, Feb. 2003.
[5] G. Masera, M. Mazza, G. Piccinini, F. Viglione and M.
Zamboni, "Architectural strategies for low-power VLSI turbo
decoders," IEEE Trans. on VLSI Systems, vol. 10, no. 3, pp. 279-
285, June 2002.
[6] F. T. Leighton. "Introduction to parallel algorithms and
architectures: arrays, trees and hypercubes," San Mateo, CA, USA,
Morgan Kaufmann Publishers, 1992.
[7] T. Gemmeke, M. Gansen and T. G. Noll, "Implementation of
scalable power and area efficient high-throughput Viterbi
decoders," IEEE J. of Solid-State Circuits, vol. 37, no. 7, pp. 941-
948, July 2002.
[8] J. Kwak and K. Lee, "Design of dividable interleaver for
parallel decoding in turbo codes," Electr. Letters, vol. 38, no. 22,
pp 1362-1364, October 2002.
[9] P. Robertson, P. Hoeher and E. Villebrun, "Optimal and sub-
optimal maximum a posteriori algorithms for turbo decoding,"
Europ. Trans. on Telecomm., vol. 8, no. 2, pp. 119-125, 1997.
[10] B. Classon, K. Blankenship and V. Desai, "Turbo decoding
with the constant-log-MAP algorithm," Proc. 2nd Int. Symp. on
Turbo Codes & Related Topics, pp. 467-470, Sept. 2000.
[11] T. Gemmeke, M. Gansen, H. Stockmanns and T.G. Noll,
"Design otimization of low-power high-performance DSP building
blocks," IEEE J. of Sol. State. Circ., vol. 39, no. 7, pp.1131-1139,
July 2004.
[12] J. Kwak, S. M. Park, S. S. Yoon and K. Lee, "Implementation
of a parallel turbo decoder with dividable interleaver," Proc. Int.
Symp. on Circuits and Systems, vol. 2, pp. 65-68, May 2003.

sizing

V - 28

➡ ➠

