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ABSTRACT 

In this paper, a cost effective bit-plane coder with throughput 

enhancement in JPEG2000 applications is proposed. Many 

literatures and the results of the chip implementation show that 

the memory requirement dominates the hardware cost of the bit-

plane coder. In order to reduce the memory size, the memory-

free algorithm is proposed to eliminate state variable memories 

by calculating three coding state variables ( p+1[n], p+1[n], and 

p[n]) on the fly. Moreover, we also propose the stripe-column-

based pass-parallel operation to perform three coding passes in 

pipeline operation and to encode four samples within the stripe-

column concurrently for the high throughput requirement. The 

experimental results show that the hardware cost and memory 

size of the proposed architecture is smaller than other existing 

architectures because of the proposed memory-free algorithm. 

Furthermore, the proposed architecture has 3 times greater 

throughput than other familiar architectures.   

1. INTRODUCTION

JPEG2000 is an emerging standard for still image coding 

developed by ISO/IEC JTC1/SC29/WGI [1]. The key 

components of the JPEG2000 system are discrete wavelet 

transform (DWT) and the entropy coding for the code-block data 

using the embedded block coding with optimized truncation 

(EBCOT) algorithm. The EBCOT algorithm contains two parts: 

tier-1 and tier-2. It is used to encode the code-block by a 

context-based binary arithmetic coder in tier-1, and the tier-2 is 

used for the rate-distortion optimization and JPEG2000 format 

bit-stream. In terms of the analysis of the computational 

complexity for JPEG2000, the bit-plane coder of the EBCOT 

architecture is the bottleneck in the JPEG2000 system [3].  

According to the literature [2]-[10], the speed-up methods and 

the memory requirement of the state variables are the design 

challenges for the high performance and cost efficient bit-plane 

coder. An efficient bit-plane coder is proposed in [2] to reduce 

the number of memory accesses. In the literature [3], The sample 

skipping (SS) and group-of-column skipping (GOCS) techniques 

are utilized to rapidly detect whether the samples in a code-block 

have already been coded to reduce the processing time. The 

architecture with two state variable PEs is proposed in [4] to 

estimate a speed improvement of approximately 17% compared 

to the single component version in [3]. The architecture in [5] 

presented the memory saving algorithm to save the magnitude 

refinement (MR) state variable memory (4K bits) based on the 

SS and GOCS methods. In addition to improve the throughput 

via the SS and GOCS methods, the pass-parallel context 

modeling (PPCM) in [6][7] is an alternative speed-up approach 

to perform three coding passes in parallel. Moreover, the parallel 

pixel skipping method is also proposed in [7] to reduce the 

processing time by more than 16.6% compared with PPCM 

architecture in [6]. Based on the PPCM, a dual context-modeling 

coding architecture in [8] is proposed to increase the throughput 

for about 25% compared with PPCM architecture in [6]. The 

architecture [9] performed all bit-planes in parallel and only used 

64  12 bit memory to keep the data-reuse requirement. In the 

literature [10], the EBCOT parallel architecture is proposed to 

perform two bit-planes in parallel and to execute three coding 

passes in parallel to attain the high throughput.  

In these architectures [2]-[10], many speed-up methods are 

proposed to increase the throughput. However, a huge amount of 

the state variable memory requirements is still a bottleneck to 

reduce the hardware cost, and what’s more, using the memory 

saving mechanism to reduce the total memory size is only 

discussed in two architecture in [5] and [9]. In this paper, we 

propose the memory-free algorithm to eliminate the state 

variable memory via the simple logic circuit. Furthermore, a cost 

effective bit-plane coder with throughput enhancement is also 

proposed in this paper on the basis of the proposed memory-free 

algorithm and the proposed stripe-column-based pass-parallel 

operation. 

2. MEMORY-FREE ALGORITHM 

Table I shows the traditional memory requirement for a code-

block to perform the three coding passes in the bit-plane coder. 

This table shows that the memory modules of two bit-plane data 

memory modules and three coding state variable are required 

during a code-block coding. For example, the quantized 

transform coefficients have the m-bit precision and the current 

bit-plane p will be coded. The significance state variable p+1[n], 

which is updated during coding the previous bit-plane p 1,

must be used to perform the three coding passes in the current 

bit-plane p. In addition, the magnitude refinement (MR) state 

variable p+1[n] is necessary to perform the coding in the current 

bit-plane p at the coding of the pass 2. 

According to the literature [5], however, a sample is already 

significant if and only if it is already significant prior to the 

current bit-plane p or it firstly becomes significant in the current 
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bit-plane p during the coding of the pass 1 or pass 3. Then, we 

can get the following property based on the above statement. 

Property I: After the coding of pass 1 or pass 3 in the bit-plane 

p, the new significant state p[n] can be accurately obtained 

according to the logic equation 

p[n] = p | p+1[n]            (1) 

Owing to the recursive characteristic in (1), we can attain the 

relation between the significance state variable and magnitude 

bit-plane data as shown in (2). 
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According to (2), the significance state variable p+1[n], which is 

needful for the coding of pass 1 and pass 3 in the current bit-

plane p, is equal to the logic OR of the bit-plane sample data m

~ p+1 ( m is the MSB data of the nonzero bit-planes). 

Moreover, the new MR state variable p[n] of the sample is 

already equal to “1” in the current bit-plane p if and only if it is 

already equal to “1” prior to the current bit-plane p or the sample 

is firstly coded in pass 2 for the current bit-plane p. And, we also 

know that the sample will be coded in pass 2 for the current bit-

plane p if and only if the significance state variable p+1[n] is 

equal to “1”. Therefore, we also can get the second property as 

follow. 

Property II: After the coding of pass 2 in the bit-plane p, the 

new MR state p[n] can be accurately obtained according to the 

logic equation 

p[n] = p+1[n] | p+1[n]             (3) 

We also use the recursive characteristic in (3) to obtain the 

relation between the MR state variable and significance state 

variable as shown in (4). 
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Now, we can use (2) to simplify (4) and then obtain (5). 
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Equation (5) shows that the MR state variable p+1[n], which is 

used in pass 2 for current bit-plane p, is also equal to the OR 

operation of the bit-plane sample data m ~ p+2.

From (2) and (5), the memory-free algorithm can be acquired. 

The significance state variable p+1[n] and the MR state variable 

p+1[n] can be calculated by OR operation of the bit-plane 

sample data.

3. VLSI ARCHITECTURE 

Based on the above memory-free algorithm, the state variable 

memories can be eliminated and the state variables ( p+1[n] and 

p+1[n]) can be calculated on the fly using some logic gates. Fig. 

1 shows the block diagram of the proposed architecture. 

A. State Variable Schedule Unit (SSU) 

After DWT, the subband data stored in the code-block 

memory are fed into the data register. For the case of the m-bit

nonzero coefficients, the bit-plane p will be executed in the 

context window logic to perform three coding passes. Owing to 

the stripe-column-based pass-parallel operation, the four samples 

within the stripe-column will be coded in parallel. The four 

coefficients within the stripe-column are stored in 4  (m 1)-bit 

data register consequentially.  

The sign bit-plane data ( [n]) and the p-th magnitude bit-plane 

values ( p[n]) can be fetched from the data register directly. 

Because of the stripe-column-based pass-parallel operations, the 

visited state variable ( p[n]) is not taken into account in the 

proposed architecture. Therefore, we only consider significance 

state variable ( p+1[n]) and MR state variable ( p+1[n]). Fig. 2 

shows the detail architecture of the state variable scheduling unit 

(SSU). In the light of (2) and (5), the SSU is devised to calculate 

the state variables ( p+1[n] and p+1[n]) on the fly using the 

proposed memory-free algorithm. The multiplexers as shown in 

Fig. 2 are utilized to select the correct data for the state variables 

in the current bit-plane p coding. Then, the state variables 

( p+1[n] and p+1[n]), which are calculated via SSU circuit, are 

delivered into the “Context Window Logic” circuit to perform 

three coding passes. There are four SSU circuits to calculate the 

corresponding state variables of the samples within a stripe-

column in the proposed architecture. 

TABLE  I

THE MEMORY REQUIREMENT FOR CODE-BLOCK CODING ALGORITHM

Category Name Description 

p[n] The p-th magnitude bit-plane 
Bit-plane Data 

[n] The sign bit-plane 

p[n] The new significance state of the bit-plane p

p[n] The new magnitude refinement (MR) state of the bit-plane pCoding State Variable 

p[n] The visited state of the bit-plane p
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B. Stripe-Column-based Pass-Parallel Operation 

In order to strengthen the throughput of the bit-plane coder in 

EBCOT, we present a fully pipelined architecture, which 

processes a complete stripe-column concurrently and pass-

parallel operation in the context formation. However, the pass 

prediction mechanism and the dependence of the significance 

state variables for the pass-parallel coding are two design 

challenges of the bit-plane encoder. Fig. 3 shows the proposed 

stripe-column-based pass-parallel operations. The four samples 

within the stripe-column are coded concurrently in each pass. 

Three coding passes are performed in 3-stage pipeline to achieve 

pass-parallel property. In the proposed architecture, the 

“vertically causal context formation” (stripe-causal) [1][6]-[8] is 

also adopted to eliminate the dependence of the significance 

state variables for the coding operations in the next stripe. 

Because of the stripe-column concurrently processing, the 

four samples within the stripe-column must be estimated to 

determine which coding pass they belong to. Nevertheless, the 

significance state variables of the four samples within a stripe-

column are mutually dependent. The pass predictor is proposed 

to solve the above problem and its architecture is shown in Fig. 4. 

In Fig 4, the numeral in the circle stands for the significance 

state of the corresponding sample within the stripe-column and 

the “Neighbor” represents the significance state of the 8 

neighbors. For the sample 1~3, they have 8 neighbors. However, 

for the sample 4, it has only five neighbors because of the 

“stripe-causal” mode. The value of the (Hi, Li) shows which 

coding pass the sample belong to. The detail description is 

expounded as follows. 

If Hi, Li = 1, 1  the sample belongs to pass 1 

If Hi, Li = 1, 0  the sample belongs to pass 2 

If Hi, Li = 0, 1  the sample belongs to pass 3 

Based on the proposed pass predictor, the complete stripe-

column concurrently can be easily performed in the correct 

coding pass for pass-parallel operation. 

In order to perform three coding passes in pipeline, we use 

three shift register banks to implement the context window logic. 

There are three data must be utilized in the shift register banks 

and these three data are sign bit ( ), magnitude bit-plane data ( ),

and significance state variables ( ). In the context window logic, 

two 64-bit row buffers are devised to store the sign bit data ( )

and the significance state data ( ) respectively. These two data 

will be exploited to perform three coding passes in next stripe. 

Furthermore, the significance predictor is also intended to 

anticipate the correct significance state ( ) for pass 1 and pass 3 

as a result of the dependence of the significance state for the four 

samples within the stripe-column. 

4. PERFORMANCE ANALYSIS 

The proposed architecture is synthesized using UMC 0.18µm 

CMOS technology, and the simulated clock frequency is 100 

MHz. The size of the code block is 64  64 and the bandwidth of 

the nonzero bit-planes is 12 bits. The total gate count of our 

architecture is about 7K gates; and further, the SSU only uses 

about 800 gates to calculate the state variables on the fly instead 

of the huge state variable memories. This result of the chip 

implementation demonstrates the proposed memory-free 

algorithm can reduce the hardware cost substantially. The 

performance comparison among our proposed architecture and 

other bit-plane coder architectures is presented in Table II. For 

the case of the m-bit nonzero bit-planes, this table shows the 

average processing time and the memory size of the state 

variables and bit-plane data for a W W code block. As the 

results of the table, the total gate count and the memory size of 

the proposed architecture is smaller than other architectures in 

[3]-[9]. According to the results of the average processing time 

in the table, the number of speed-up is about 3 ~ 5 times than 

other architectures in [2]-[8]. 

5. CONCLUSION 

In this paper, a cost effective bit-plane coder with throughput 

enhancement is proposed. In the first place, we propose the 

memory-free algorithm. In order to reduce the hardware cost, we 

devise the SSU circuit to calculate state variables on the fly 

without any state variable memory in the light of the proposed 

memory-free algorithm. Furthermore, the stripe-column-based 

pass-parallel operation is also proposed in our architecture not 

only to perform three coding pass in pipeline operation but also 

to process four samples within the stripe-column in parallel. 
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