
MEMORY ANALYSIS AND THROUGHPUT ENHANCEMENT FOR COST EFFECTIVE

BIT-PLANE CODER IN JPEG2000 APPLICATIONS

Lien-Fei Chen, Tai-Lun Huang, and Yeong-Kang Lai

Department of Electrical Engineering

National Chung Hsing University, Taiwan, R.O.C.

Email: {d9264304, g9164112}@mail.nchu.edu.tw, yklai@dragon.nchu.edu.tw

ABSTRACT

In this paper, a cost effective bit-plane coder with throughput

enhancement in JPEG2000 applications is proposed. Many

literatures and the results of the chip implementation show that

the memory requirement dominates the hardware cost of the bit-

plane coder. In order to reduce the memory size, the memory-

free algorithm is proposed to eliminate state variable memories

by calculating three coding state variables (p+1[n], p+1[n], and

p[n]) on the fly. Moreover, we also propose the stripe-column-

based pass-parallel operation to perform three coding passes in

pipeline operation and to encode four samples within the stripe-

column concurrently for the high throughput requirement. The

experimental results show that the hardware cost and memory

size of the proposed architecture is smaller than other existing

architectures because of the proposed memory-free algorithm.

Furthermore, the proposed architecture has 3 times greater

throughput than other familiar architectures.

1. INTRODUCTION

JPEG2000 is an emerging standard for still image coding

developed by ISO/IEC JTC1/SC29/WGI [1]. The key

components of the JPEG2000 system are discrete wavelet

transform (DWT) and the entropy coding for the code-block data

using the embedded block coding with optimized truncation

(EBCOT) algorithm. The EBCOT algorithm contains two parts:

tier-1 and tier-2. It is used to encode the code-block by a

context-based binary arithmetic coder in tier-1, and the tier-2 is

used for the rate-distortion optimization and JPEG2000 format

bit-stream. In terms of the analysis of the computational

complexity for JPEG2000, the bit-plane coder of the EBCOT

architecture is the bottleneck in the JPEG2000 system [3].

According to the literature [2]-[10], the speed-up methods and

the memory requirement of the state variables are the design

challenges for the high performance and cost efficient bit-plane

coder. An efficient bit-plane coder is proposed in [2] to reduce

the number of memory accesses. In the literature [3], The sample

skipping (SS) and group-of-column skipping (GOCS) techniques

are utilized to rapidly detect whether the samples in a code-block

have already been coded to reduce the processing time. The

architecture with two state variable PEs is proposed in [4] to

estimate a speed improvement of approximately 17% compared

to the single component version in [3]. The architecture in [5]

presented the memory saving algorithm to save the magnitude

refinement (MR) state variable memory (4K bits) based on the

SS and GOCS methods. In addition to improve the throughput

via the SS and GOCS methods, the pass-parallel context

modeling (PPCM) in [6][7] is an alternative speed-up approach

to perform three coding passes in parallel. Moreover, the parallel

pixel skipping method is also proposed in [7] to reduce the

processing time by more than 16.6% compared with PPCM

architecture in [6]. Based on the PPCM, a dual context-modeling

coding architecture in [8] is proposed to increase the throughput

for about 25% compared with PPCM architecture in [6]. The

architecture [9] performed all bit-planes in parallel and only used

64 12 bit memory to keep the data-reuse requirement. In the

literature [10], the EBCOT parallel architecture is proposed to

perform two bit-planes in parallel and to execute three coding

passes in parallel to attain the high throughput.

In these architectures [2]-[10], many speed-up methods are

proposed to increase the throughput. However, a huge amount of

the state variable memory requirements is still a bottleneck to

reduce the hardware cost, and what’s more, using the memory

saving mechanism to reduce the total memory size is only

discussed in two architecture in [5] and [9]. In this paper, we

propose the memory-free algorithm to eliminate the state

variable memory via the simple logic circuit. Furthermore, a cost

effective bit-plane coder with throughput enhancement is also

proposed in this paper on the basis of the proposed memory-free

algorithm and the proposed stripe-column-based pass-parallel

operation.

2. MEMORY-FREE ALGORITHM

Table I shows the traditional memory requirement for a code-

block to perform the three coding passes in the bit-plane coder.

This table shows that the memory modules of two bit-plane data

memory modules and three coding state variable are required

during a code-block coding. For example, the quantized

transform coefficients have the m-bit precision and the current

bit-plane p will be coded. The significance state variable p+1[n],

which is updated during coding the previous bit-plane p 1,

must be used to perform the three coding passes in the current

bit-plane p. In addition, the magnitude refinement (MR) state

variable p+1[n] is necessary to perform the coding in the current

bit-plane p at the coding of the pass 2.

According to the literature [5], however, a sample is already

significant if and only if it is already significant prior to the

current bit-plane p or it firstly becomes significant in the current

V - 170-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

bit-plane p during the coding of the pass 1 or pass 3. Then, we

can get the following property based on the above statement.

Property I: After the coding of pass 1 or pass 3 in the bit-plane

p, the new significant state p[n] can be accurately obtained

according to the logic equation

p[n] = p | p+1[n] (1)

Owing to the recursive characteristic in (1), we can attain the

relation between the significance state variable and magnitude

bit-plane data as shown in (2).

2][||][|][][

][||][|][

][|][|][

][|][][

211

1

21

1

nnnn

nnn

nnn

nnn

mppp

mpp

ppp

ppp

According to (2), the significance state variable p+1[n], which is

needful for the coding of pass 1 and pass 3 in the current bit-

plane p, is equal to the logic OR of the bit-plane sample data m

~ p+1 (m is the MSB data of the nonzero bit-planes).

Moreover, the new MR state variable p[n] of the sample is

already equal to “1” in the current bit-plane p if and only if it is

already equal to “1” prior to the current bit-plane p or the sample

is firstly coded in pass 2 for the current bit-plane p. And, we also

know that the sample will be coded in pass 2 for the current bit-

plane p if and only if the significance state variable p+1[n] is

equal to “1”. Therefore, we also can get the second property as

follow.

Property II: After the coding of pass 2 in the bit-plane p, the

new MR state p[n] can be accurately obtained according to the

logic equation

p[n] = p+1[n] | p+1[n] (3)

We also use the recursive characteristic in (3) to obtain the

relation between the MR state variable and significance state

variable as shown in (4).

4][||][|][][

][||][|][|][

][|][|][|][

][|][|][

][|][][

321

321

3321

221

11

nnnn

nnnn

nnnn

nnn

nnn

mppp

mppp

pppp

ppp

ppp

Now, we can use (2) to simplify (4) and then obtain (5).

5][||][|][

][|

|][||][|][

|][||][|][

][||][|][][

32

43

32

321

nnn

n

nnn

nnn

nnnn

mpp

m

mpp

mpp

mppp

Equation (5) shows that the MR state variable p+1[n], which is

used in pass 2 for current bit-plane p, is also equal to the OR

operation of the bit-plane sample data m ~ p+2.

From (2) and (5), the memory-free algorithm can be acquired.

The significance state variable p+1[n] and the MR state variable

p+1[n] can be calculated by OR operation of the bit-plane

sample data.

3. VLSI ARCHITECTURE

Based on the above memory-free algorithm, the state variable

memories can be eliminated and the state variables (p+1[n] and

p+1[n]) can be calculated on the fly using some logic gates. Fig.

1 shows the block diagram of the proposed architecture.

A. State Variable Schedule Unit (SSU)

After DWT, the subband data stored in the code-block

memory are fed into the data register. For the case of the m-bit

nonzero coefficients, the bit-plane p will be executed in the

context window logic to perform three coding passes. Owing to

the stripe-column-based pass-parallel operation, the four samples

within the stripe-column will be coded in parallel. The four

coefficients within the stripe-column are stored in 4 (m 1)-bit

data register consequentially.

The sign bit-plane data ([n]) and the p-th magnitude bit-plane

values (p[n]) can be fetched from the data register directly.

Because of the stripe-column-based pass-parallel operations, the

visited state variable (p[n]) is not taken into account in the

proposed architecture. Therefore, we only consider significance

state variable (p+1[n]) and MR state variable (p+1[n]). Fig. 2

shows the detail architecture of the state variable scheduling unit

(SSU). In the light of (2) and (5), the SSU is devised to calculate

the state variables (p+1[n] and p+1[n]) on the fly using the

proposed memory-free algorithm. The multiplexers as shown in

Fig. 2 are utilized to select the correct data for the state variables

in the current bit-plane p coding. Then, the state variables

(p+1[n] and p+1[n]), which are calculated via SSU circuit, are

delivered into the “Context Window Logic” circuit to perform

three coding passes. There are four SSU circuits to calculate the

corresponding state variables of the samples within a stripe-

column in the proposed architecture.

TABLE I

THE MEMORY REQUIREMENT FOR CODE-BLOCK CODING ALGORITHM

Category Name Description

p[n] The p-th magnitude bit-plane
Bit-plane Data

[n] The sign bit-plane

p[n] The new significance state of the bit-plane p

p[n] The new magnitude refinement (MR) state of the bit-plane pCoding State Variable

p[n] The visited state of the bit-plane p

V - 18

➡ ➡

B. Stripe-Column-based Pass-Parallel Operation

In order to strengthen the throughput of the bit-plane coder in

EBCOT, we present a fully pipelined architecture, which

processes a complete stripe-column concurrently and pass-

parallel operation in the context formation. However, the pass

prediction mechanism and the dependence of the significance

state variables for the pass-parallel coding are two design

challenges of the bit-plane encoder. Fig. 3 shows the proposed

stripe-column-based pass-parallel operations. The four samples

within the stripe-column are coded concurrently in each pass.

Three coding passes are performed in 3-stage pipeline to achieve

pass-parallel property. In the proposed architecture, the

“vertically causal context formation” (stripe-causal) [1][6]-[8] is

also adopted to eliminate the dependence of the significance

state variables for the coding operations in the next stripe.

Because of the stripe-column concurrently processing, the

four samples within the stripe-column must be estimated to

determine which coding pass they belong to. Nevertheless, the

significance state variables of the four samples within a stripe-

column are mutually dependent. The pass predictor is proposed

to solve the above problem and its architecture is shown in Fig. 4.

In Fig 4, the numeral in the circle stands for the significance

state of the corresponding sample within the stripe-column and

the “Neighbor” represents the significance state of the 8

neighbors. For the sample 1~3, they have 8 neighbors. However,

for the sample 4, it has only five neighbors because of the

“stripe-causal” mode. The value of the (Hi, Li) shows which

coding pass the sample belong to. The detail description is

expounded as follows.

If Hi, Li = 1, 1 the sample belongs to pass 1

If Hi, Li = 1, 0 the sample belongs to pass 2

If Hi, Li = 0, 1 the sample belongs to pass 3

Based on the proposed pass predictor, the complete stripe-

column concurrently can be easily performed in the correct

coding pass for pass-parallel operation.

In order to perform three coding passes in pipeline, we use

three shift register banks to implement the context window logic.

There are three data must be utilized in the shift register banks

and these three data are sign bit (), magnitude bit-plane data (),

and significance state variables (). In the context window logic,

two 64-bit row buffers are devised to store the sign bit data ()

and the significance state data () respectively. These two data

will be exploited to perform three coding passes in next stripe.

Furthermore, the significance predictor is also intended to

anticipate the correct significance state () for pass 1 and pass 3

as a result of the dependence of the significance state for the four

samples within the stripe-column.

4. PERFORMANCE ANALYSIS

The proposed architecture is synthesized using UMC 0.18µm

CMOS technology, and the simulated clock frequency is 100

MHz. The size of the code block is 64 64 and the bandwidth of

the nonzero bit-planes is 12 bits. The total gate count of our

architecture is about 7K gates; and further, the SSU only uses

about 800 gates to calculate the state variables on the fly instead

of the huge state variable memories. This result of the chip

implementation demonstrates the proposed memory-free

algorithm can reduce the hardware cost substantially. The

performance comparison among our proposed architecture and

other bit-plane coder architectures is presented in Table II. For

the case of the m-bit nonzero bit-planes, this table shows the

average processing time and the memory size of the state

variables and bit-plane data for a W W code block. As the

results of the table, the total gate count and the memory size of

the proposed architecture is smaller than other architectures in

[3]-[9]. According to the results of the average processing time

in the table, the number of speed-up is about 3 ~ 5 times than

other architectures in [2]-[8].

5. CONCLUSION

In this paper, a cost effective bit-plane coder with throughput

enhancement is proposed. In the first place, we propose the

memory-free algorithm. In order to reduce the hardware cost, we

devise the SSU circuit to calculate state variables on the fly

without any state variable memory in the light of the proposed

memory-free algorithm. Furthermore, the stripe-column-based

pass-parallel operation is also proposed in our architecture not

only to perform three coding pass in pipeline operation but also

to process four samples within the stripe-column in parallel.

6. REFERENCES

[1] JPEG-2000 Part 1 Final Committee Draft Version 1.0,

ISO/IEC JTC1/SC29/WG1 N1646R.

[2] Kishore Andra, Tinku Acharya, and Chaitali Chakrabarti,

“Efficient VLSI Implementation of Bit Plane Coder of

JPEG2000,” SPIE International Conference Applications of

Digital Image Processing XXIV., vol. 4472, pp. 246-257,

2001.

[3] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, and Liang-

Gee Chen, “Analysis and Architecture Design of Block-

Coding Engine for EBCOT in JPEG-2000,” IEEE

TABLE II

PERFORMANCE COMPARISON FOR W W CODE BLOCK AND m-BIT NONZERO BIT-PLANES. ALL RESULTS OF THE CHIP IMPLEMENTATION

ARE BASED ON THE 64 64 CODE BLOCK.

Architecture [2] [3] [5] [6] [7] [8] [9]* Proposed

Average processing time

(cycle counts)
3 m W2 1.3 m W2 1.3 m W2 m W2 0.83 m W2 0.75 m W2 (1 +) W2 0.25 m W2

Memory size (bits) 768 12808 8192 8192 8192 8192 768 0

Gate count (NAND2) 2000 ~13000 ~14000 8690 N/A 8871 14803 6532

* is about 0.1 to 0.2 when the nonzero bit-planes are smaller than or equal to 5 and close to 1 when larger than 5.

V - 19

➡ ➡

Transactions on Circuits and Systems for Video

Technology., vol. 13, no. 3, pp. 219-230, March 2003.

[4] Yijun Li, Ramy E. Aly, Beth Wilson, and Magdy A.

Bayoumi, “Analysis and Enhancements for EBCOT in

High-Speed JPEG2000 Architecture,” IEEE International

Midwest Symposium on Circuits and Systems., vol. 2, pp.

II-207 - II-210, Aug. 2002.

[5] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee and Chein-

Wei Jen, “High-Speed Memory-Saving Architecture for the

Embedded Block Coding in JPEG2000,” IEEE

International Symposium on Circuits and Systems., vol. 5,

pp. V-133 - V-136, May 2002.

[6] Jen-Shiun Chiang, Yu-Sen Lin, and Chang-Yo Hsieh,

“Efficient Pass-Parallel Architecture for EBCOT in

JPEG2000,” IEEE International Symposium on Circuits

and Systems., vol. 1, pp. I-773 - I-776, May 2002.

[7] Yijun Li, Ramy E. Aly, Magdy A. Bayoumi, and Samia A.

Mashali, “Parallel High-Speed Architecture for EBCOT in

JPEG2000,” IEEE International Conference on Acoustics,

Speech, and Signal Processing., vol. 2, pp. II-481-4, April

2003.

[8] Jen-Shiun Chiang, Chun-Hau Chang, Yu-Sen Lin, Chang-

You Hsieh, and Chih-Hsien Hsia, “High-Speed EBCOT

with Dual Context-Modeling Coding Architecture for

JPEG2000,” IEEE International Symposium on Circuits

and Systems., vol. 3, pp. III-865 - III-868, May 2004.

[9] Hung-Chi Fang, Tu-Chih Wang, Chung-Jr Lian, Te-Hao

Chang and Liang-Gee Chen, “High Speed Memory

Efficient EBCOT Architecture for JPEG2000,” IEEE

International Symposium on Circuits and Systems., vol. 2,

pp. II-736 - II-739, May 2003.

[10] H. Yamauchi, S. Okada, K. Taketa, T. Ohyama, Y. Matsuda,

T. Mori, S. Okada, T. Watanabe, Y. Matsuo, Y. Yamada, T.

Ichikawa and Y. Matsushita, “Image Processor Capable of

Block-Noise-Free JPEG2000 Compression with 30frames/s

for Digital Camera Applications,” IEEE International

Solid-State Circuits Conference., vol. 1, pp. 46-477, 2003.

m - 1

Sign

p + 1

p

0

p - 1

p + 2

Context Window

Logic MQ

Coder
Compressed

code

Context Modeling

ZC SC

MR RLC

D

CX
State variable

Schedule Unit

(SSU)

Fig. 1. Block diagram of the proposed bit-plane coder.

m - 1

Sign

p + 1

p

0

p - 1

p + 2

Context Window

Logic

State variable Schedule Unit (SSU)

Fig. 2. Detail architecture of the State Variable Schedule Unit

(SSU) circuit.

s
tr

ip
e

Stripe-causal

Context window for Pass1

Context window for Pass2

Context window for Pass3

Fig. 3. Proposed stripe-column-based pass-parallel operation.

H1

L1

Magnitude

bit

Neighbor

1

H2

L2

Neighbor

2

H3

L3

Neighbor

3

H4

L4

Neighbor

4

Magnitude

bit

Magnitude

bit

8

8

8

5

Fig. 4. Detail architecture of the proposed pass predictor.

V - 20

➡ ➠

