<

NOVEL HIGH-THROUGHPUT EBCOT ARCHITECTURE FOR JPEG2000

Ramy E. Aly, Beth Wilson and Magdy A. Bayoumi

University of Louisiana at Lafayette, LA 70504
Email: {ramy, beth, mab}@louisiana.edu

ABSTRACT

Embedded block coding with optimized truncation
(EBCOT) consumes more than 50% of the processing
time in JPEG200 encoding system. Hardware
implementation with careful handling for the control
nature of tier-1 is essential. Although, some architectures
have been developed to speed up the coding operations,
they still require a tedious checking mechanism to decide
if each sample is eligible or not for coding. In this paper,
we propose a novel checking scheme for the three coding
passes for EBCOT that works in parallel with the
encoding process to achieve the required high throughput.
The simulation results show that the proposed architecture
increases the throughput by 19% on average compared to
other best known architectures.

1. INTRODUCTION

JPEG2000 becomes one of the most important image
compression standards due to its features like low bit-rate
performance, lossless and lossy compression, region of
interest coding, continuous-tone and bi-level compression,
and progressive transmission by pixel accuracy and
resolution. JPEG2000 depends on three basic blocks, the
discrete wavelet transform (DWT), tier-1 and tier-2.
Starting with DWT and the scalar quantization, the
transformed image is divided into tiles, named code
blocks, with typical dimensions are 32x32 or 64x64
coefficients. Each code block is encoded individually in
tier-1 and tier-2 coding blocks as shown in Fig. 1. The
code block is divided into one sign bit-plane and several
magnitude bit-planes. Tier-1 consists of two blocks,
context formation block which generates the context
formation (CX) and Decision (D) that are coded with the
arithmetic encoder to form the compressed bitstream. In
Tier-2, rate distortion optimization is used to truncate
some of the compressed data to achieve the desired bit-
rate. The context formation encodes the code block bit-
plane by bit-plane, starting from the most significant bit-
plane with at least a non-zero element to the least
significant bit-plane. Each bit-plane is coded in three

0-7803-8874-7/05/$20.00 ©2005 IEEE V-13

coding passes. Each bit in a bit-plane is coded once in one
of the three coding passes. Every four rows in each bit-
plane are called “stripe”. In each pass, the bits are scanned
stripe by stripe from top to bottom. Within a stripe, each
4-bits (samples) column is scanned column by column
from left to right. Within a column, each bit location is
scanned bit by bit from top to down as shown in Fig. 2.
EBCOT has four primitives coding PEs: zero coding (ZC),
sign coding (SC), magnitude refinement (MR), and run-
length coding (RLC).

Tier-1 Tier-2
COd; Context Arithrr;etic Bit Stream | Compressed
Blocks Formation Encoder Organization | Code Block

Fig. 1. Block Diagram of the EBCOT Encoders for JPEG2000

Stripe (k)

Stripe (k+1)

Fig. 2. Scanning order in every pass

If the bit is insignificant and any one of its neighbors
is significant, it is coded in significance propagation pass
(pass 1) that is based on ZC primitive. If the bit is
significant, it is coded in magnitude refinement pass (pass
2) that is based on MR primitive. Other bits are coded in
cleanup pass (pass 3) that is based on ZC and RLC
primitive. The coding primitives generate context labels
based on the sign and significance status of 8-connect
neighbors of the current bit.

ICASSP 2005

Studies show that embedded block coding with
optimized truncation (EBCOT) consumes more than 50%
of the processing time in JPEG200 encoding system [1].
Many EBCOT implementations have been proposed [2, 3,
4, 5, 6]. The context formation consists of two basic
stages. The first stage is the checking mechanism to
determine if the bit should be coded in this pass or not and
the second stage is the coding using the suitable one or
more of the four primitives encoders. Previous work only
concentrated on the coding part trying to minimize the
coding time to NxN clock cycles for an NxN code block.
A check mechanism was proposed in [5] showing the
importance of the speed up of the checking time and the
power consumption for this stage. In this paper, we
propose a novel checking mechanism that reduces the
searching time for eligible samples, columns, and stripes
aiming to increase the context formation throughput. The
paper is organized as follows. In section II, we describe
the context formation block. The proposed checking
algorithm is discussed in section III. The performance of
the proposed architecture is presented in Section IV, and
section V concludes the paper.

2. CONTEXT FORMATION BLOCK

The context formation block obtains the sign and
magnitudes bit planes for each code block as its input.
Each sample in each magnitude bit plane should be
encoded in one of the three passes. The context formation
generates the context (CX) and decision (D) for each
sample using the four coding primitives as its output.
Direct implementation costs 4 clock cycles per column (1
cycle per bit) regardless if the sample is actually coded in
this pass [7, 8]. After encoding, when non valid contexts
are generated for samples that shouldn’t be coded in this
pass, these non valid contexts are ignored. The encoding
process for one bit plane costs 3xNxN clock cycles. In [2],
two speed up techniques are proposed that basically
depend on checking the sample/column/group of columns
first and according to that scanning, the control unit
decides if there is at least one sample needs to be coded in
the column. If not, the column is skipped. This
implementation costs only 1xNxN cycles of coding time
in addition to a checking time about 1 clock cycle per
column. This technique costs at least 3xNxNx(1/4) clock
cycles for checking process. In [5], an efficient
architecture was proposed to perform the checking process
faster and with low power consumption. The speed up is
achieved by doing the check process early in the
architecture by scanning the significance memory to
determine if there is a sample that needs to be coded in the

column. In the context formation block, the processing
time equals the checking time and the coding time.

Fig. 3 shows the average number of samples coded in
the three passes in each bit plane for many code blocks
from 256x256 gray scale Lena image. It is clear that there
are some bit planes with majority of the samples are coded
in one pass, like pass3 for the higher bit planes and pass2
for the lower bit plane. The regular checking mechanisms
in [2, 5] still treat all the passes equally. In reality the
number of samples coded differs in each pass. The basic
problem is finding eligible sample(s) quickly and to have
the ability to skip the unneeded
samples/columns/stripes/passes in short amount of time to
increase the throughput of the system. The context
formation block performs basically two operations,
checking for eligible samples and encoding for these
samples.

O Clean Up Pass B Refinement Pass O Significant Pass

100%
80%
60%
40%
20%

0%

6 5 4 3 2 1 0

Bit plane Number

Fig. 3. The average percentage of number of samples
coded in each bit plane

3. THE PROPOSED ARCHITECTURE

We propose a novel EBCOT architecture, shown in Fig. 4,
which depends on a fast checking mechanism to decide
the eligibility of each bit/column/stripe/pass to be coded in
each of the three coding passes. The checking mechanism
is implemented using two memories named, pass memory
(PM) and pass status memory (PSM). The pass memory is
of size NxNx2 and contains the sample’s correct pass (i.e.,
1, 2 or 3). The corresponding pass for each sample in the
current processed bit plane is stored in the pass memory.
For each coding pass, the control unit can easily check the
pass numbers for the 4 samples in each column(s) in
parallel to determine if there is at least one sample need to
be coded in this column(s) by comparing the pass number
in the pass memory with the current coding pass.

PASS
STATUS
Memory

(PSM)

PASS
Memory
(PM)

Significance ,
MR, and Final
Memories

Magnitude
Memory

Sign
Memory

Memories

1
1
'
1
1
1
'
i
Arithmatic !
1 Encoder H
1
Zero Coding : i
PE —> !
I i !
| ! 1
I i :
Run Length
Coding PE 1 ' '

Sign Coding
PE e

Context Formation

Fig.4. The proposed Architecture for EBCOT

If the pass number in the pass memory coincides with
the current coding pass, the sample must be coded in this
pass. If not, the control unit skips the sample. The
proposed mechanism can be applied in serial and parallel
coding architectures. In this paper, we concentrate on the
serial coding architecture, meaning passl followed by
pass2 and finally pass3. The pass memory doesn’t change
during the coding of passl and 2. After coding the first
stripe in pass3, the control unit starts modifying the pass
memory for the next bit plane in parallel to the coding
process for pass3 as shown in Fig.5.

Scheduling -
Modify
PM,
PSM
Pass 1 Pass 2 Pass 3 Pass 1 i
Time

I rd

Fig. 5. Timing diagram of the encoding sequence

According to the statistical analysis shown in Fig. 3,
we extend the proposed idea by adding the pass status
memory (PSM) that summarizes the passes required for
each group of 8 columns, each stripe and each pass as
shown in Fig. 6. Assume we have M stripes (M= N/4)
and each stripe has L*8 columns. We choose 8 columns as
one group to achieve the best run-time performance [2].
Fig. 6 shows an example situation of the PSM where one
bit is dedicated for each pass. The first column indicates
the passes required to code of each stripe. The MSB is
dedicated for passl, the middle bit for pass2 and the LSB
for pass3. In the example, the first stripe status is “111”
that means there are samples need to be coded in each of
the three passes that means the control unit can’t skip the

stripe while coding it for any of the three passes. For the
M" stripe, “010” means that the stripe need to be coded in
pass 2 only and the control unit can skip checking/coding
the whole stripe at passl and pass3. The last row, M+1,
contains the passes required to code the entire bit plane. In
the showing example, “111” means this the three passes
are needed to code this bit plane. As shown in Fig. 3, there
are some bit planes may not need to be coded in the three
passes, others may only need 2 passes and the rest requires
the three passes. The following columns in the PSM
contain the status of each group of 8 columns in each
stripe in the bit plane.

Stripe Group (1) Group (2) --------- Group (L)
1 111 001 111 010
2 111 111 111 001
M 010 010 010 010
111
Passes

Fig. 6. Status pass memory organization

At the beginning, PM contains “3” to indicate that all
the samples in the MSB is coded in pass3. After coding of
the first stripe, the control unit starts modifying PM
according to the bit plane magnitude values as shown in
Fig. 7. The PSM is also modified at least after the first
stripe of the PM has been modified. Using gate logic and
comparators, the PSM can easily modified for the next bit
plane and all the stripes status bits can be determined. The
proposed checking mechanism is summarized in Fig. 8.

The proposed architecture solves the checking problem in
EBCOT design by doing all the decisions required for the
three passes in one time in parallel to the encoding process
to achieve high-throughput context formation stream.

Initial: All PM coefficients =3
For all PM coefficients,
If bit plane k(nl, n2) =1, then PM(nl, n2) =2

For all PM coefficients,
If PM(nl,n2) =2,

For the 8 neighbors for (nl, n2),

If PM(neighbor) =3,
then PM (neighbor) = 1

Fig. 7. Pass Memory modification Algorithm

For each pass
If pass status =0, skip the pass.
Else,
For each stripe
CPU checks the SPM (stripe status) to decide
whether or not to encode the stripe.
If“0”, skip the whole stripe.
Else,
Check the SM (columns status),
Only encode the column with “1” status.

Fig. 8. The proposed checking mechanism

4. EXPERIMENTAL RESULTS

A Matlab program is designed to calculate the checking
time for the proposed architecture and SS and GOCS
techniques in [2] at serial coding. All of these
architectures have the same encoding time but they have
different checking time that we try to simulate. For each
image, a DC shift (-128), wavelet transform for 3 levels
using 5/3 filter and quantization for 256 gray levels are
applied. The image is divided into 64x64 code blocks. The
proposed architecture reduces the checking time by at
least 19% than the other architectures, as shown in Fig. 9,
due to its ability to skip passes/stripes/group of columns
faster.

5. CONCLUSION

A novel checking mechanism is proposed to highly
increase the throughput of the context formation block.
Pass memory and status pass memory are added that
contain the pass for each sample in the bit plane and a
summary for the group/stripe/pass status to speed up the
checking mechanism. The proposed mechanism can be
used for serial and parallel EBCOT architecture. This
paper describes the architecture for the serial coding

passes. Compared to the other architectures, the proposed
architecture shows on average 19% higher throughput
than the other GOCS+SS.

|mSS BGOCS+SS O Proposed |

checking time (%)
(o]
o

o

N X

I N R G
A\ 5 S &
Q N\ o

X N
@ c}s“

Fig. 9. Comparison of the required checking time
ACKNOLWLEDGEMENT

The authors acknowledge the support of U.S. Department
of energy (DOE), EETAPP program DE97ER12220, The
Governor’s Information Technology initiative, and the
support of NSF, INF 6-001-006.

6. REFERENCES

[1] M. D. Adams and F. Kossentini, “Jasper: a software-based
JPEG-2000 codec implementation,” Proc. IEEE Int. Conf. Image
Processing, vol. 2, pp.53-56, Sep. 2000.

[2] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, and Liang-
Gee Chen, “Analysis and Architecture Design of Block-Coding
Engine in JPEG-2000,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 13, no. 3, March 200.3

[3] Y. Li, R. E. Aly, B. Wilson, and M. A. Bayoumi, “Analysis
and Enhancement for EBCOT in High speed JPEG2000
Architectures,” IEEE Midwest Symposium on Circuits and
Systems, pp.207-210, July 2002.

[4] Y. Li, R. E. Aly, M. A. Bayoumi, and S. Mashali, “Parallel
High-Speed Architecture for EBCOT in JPEG2000,” IEEE
International Conference on Acoustics, Speech, and Signal
Processing, vol.2, pp. 481-484, April 2003

[5] R. E. Aly, M. A. Bayoumi, “Low-Power and High-Speed
Architecture for EBCOT Block in JPEG2000 System,” IEEE
Midwest Symposium on Circuits and Systems, July 2004.

[6] K. Andra, C. Chankrabarti and T. Acharya, “A High-
Performance JPEG2000 Architecture,” IEEE Trans. Circuit and
Systems for Video Technology, vol. 13, no. 3, pp. 209-218,
March 2003.

[7] D. Taubman, “EBCOT: Embedded Block Coding with
Optimized Truncation,” ISO/IEC JTC1/SC29/WG1 N1020R.

[8] D. Taubman and HP labs, “Report on core experiment
CodeEff22, EBCOT: Embedded Block Coding with Optimized
Truncation,” Tech. Rep. N1020R, ISO/IEC JTC1/SC29/WGl,
Oct 1998.

I 2

