
THREE-LEVEL PARALLEL HIGH SPEED ARCHITECTURE FOR EBCOT IN JPEG2000

Yijun Li and Magdy Bayoumi

The Center for Advanced Computer Studies
University of Louisiana at Lafayette, Lafayette, LA, 70504, USA

{yxl4444,mab}@cacs.louisiana.edu

ABSTRACT

In this paper, a multi-level parallel high speed architecture
for Embedded Block Coding with Optimized Truncation
(EBCOT) tier-1 in JPEG2000 is proposed. To increase the
system throughput, this architecture adopts three levels of
parallelism: 1. the parallelism among bit-planes: all the bit-
planes can be processed simultaneously; 2. the parallelism
among three pass scannings: three passes scan one bit-plane
in parallel; 3. the parallelism among coding bits: bits that
are coded in different passes can be coded simultaneously
without any conflict. The experiment results show that the
proposed architecture can encode one code block with size
N×N in only 0.6×N×N clock cycles and is twice as fast
as the fastest architecture in the literatures so far.

1. INTRODUCTION

In January 2001, JPEG2000 was introduced by ISO/IEC
JTC1/SC20/WG1 as a new image compression standard[1].
This new standard supports the rich set of features that are
not available in existing JPEG standard, such as excellent
low bit-rate performance, both lossy and lossless encoding
in one algorithm, random codestream access, precise single-
pass rate control, region-of-interest coding and improved er-
ror resiliency.

The block diagram of JPEG2000 is shown in Fig. 1. The
original image data is divided into non-overlapping rect-
angular tiles. Then either (5,3) discrete wavelet transform
(DWT) supporting loss-less compression or (9,7) DWT sup-
porting lossy compression are performed on the tiles by fil-
tering each row and column of the image tiles with a high-
pass and low-pass filter. Filtering the image in the DWT
phase creates a set of DWT subbands (LL, HL, LH, HH).
If lossy compression is chosen, the wavelet coefficients in
DWT subbands are scalar-quantized. Each wavelet subband
is divided into code blocks. Then the wavelet coefficients in
code blocks are entropy coded by using EBCOT algorithm.

Thanks to the support of the U.S. Department of Energy (DoE), EE-
TAPP program DE97ER12220, the Governor’s Information Technology
Initiative, and the support of NSF, INF 6-001-006.

Irreversible Color

(Tiles)

Image Descrete Wavelet
Transformation (Subbands)

Coefficients
DWT

(Code Blocks)
Quantized DWT Coefficients

Stream

 Bit

 Image Encoding
Arithmetic

Quantization

Bit Plane
Coding

CX

D

EBCOT tier−1

Transform &
Image Data

 Original

Compressed

& Rate Control
Data organization

Pre−processing

Fig. 1. Block Diagram of JPEG2000

Finally, data ordering and rate control organize the com-
pressed data into a feature-rich codestream, i.e. the com-
pressed image.

As entropy coding, EBCOT algorithm is complicated
and full with bit operations that cannot be implemented ef-
ficiently in software. Profiling techniques in [2] show the
EBCOT algorithm is a huge time-consuming part (typically
more than 50%). As results, an unefficient EBCOT imple-
mentation becomes a bottleneck for tremendous data through-
put that are often required by multimedia systems, espe-
cially, real-time applications. Since bit operations are more
suitable to hardware implementation and parallelism usu-
ally can increase the system throughput, multi-level parallel
EBCOT hardware implementation should be a solution for
the bottleneck mentioned above.

2. EBCOT ALGORITHM IN JPEG2000

As shown in Fig. 1, EBCOT algorithm is divided into two
phases: bit-plane coding phase and adaptive arithmetic en-
coding (AE) phase. Bit-plane coding phase constructs con-
text information for each bit, i.e. context (CX) and decision
(D). By using the context (CX), AE adaptively encodes the
decision (D) bit by bit to achieve high coding efficiency.

2.1. Bit-Plane Coding

The DWT coefficients in a code-block memory are stored as
binary values. Each binary value can be seen as a sequence
of bits with positions from n to 1 if the binary value has
n bits. All the bits at the same position composes a bit-
plane. For example, all the Least Significant Bits (LSBs) of
the DWT coefficients in a code-block compose a bit-plane

V - 50-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

Code
Block

Bit Plane
Scanning
Order

Code Block Zoom

Zoom

Bit Plane 0

Bit Plane N−1

Order

Stripe Scanning
Bit, Column

Stripe

MSB

LSB

DWT Coefficient

(a)

(b)

HL1

LH2

HL2

HH2

LL2

LH1 HH1

Fig. 2. EBCOT coding order

because they are on the same position 1. Each bit plane is
divided into stripes that are continuous four rows of a bit-
plane, i.e. a bit-plane with size N ×N should have N/4
stripes. So one column of a stripe has 4 bits. Bit plane
coding phase contains three passes: Significant Pass (Pass
1), Magnitude Refinement Pass (Pass 2) and Clean-up Pass
(Pass 3). Each pass should scan a bit-plane in order: bit by
bit, column by column and stripe by stripe. Then a code
block is scanned bit-plane by bit-plane. Fig. 2 provides a
topview (Fig. 2 (a)) and a sideview (Fig. 2 (b)) for a code
block and scanning order of passes.

A DWT coefficient is associated with a significance state.
Before starting the three passes, all the significance states
of a code-block are initialized as insignificant. During pass
scanning, the significance state of a wavelet coefficient is
changed from insignificant state into significant state when-
ever Most Significant Bit (MSB) of the wavelet coefficient
is coded. So all the bits of a DWT coefficient before MSB
coding is considered as insignificant for all the three passes
and all the bits of a DWT coefficient after MSB coding is
considered as significant for all the three passes. The signif-
icance states of one bit and its 8 neighbors determine which
pass a bit is coded in and both CX and D. If one bit’s sig-
nificance state is insignificant, the bit is insignificant. Oth-
erwise, the bit is significant. If a bit is insignificant and any
neighbor is significant, the bit is coded in Pass 1. If a bit is
significant, the bit is coded in Pass 2. The rest of all the bits
are coded in Pass 3. During the scanning of the three passes,
any bit can only be coded in one of three passes (Pass 1, Pass
2 or Pass 3).

2.2. AE termination

Since AE is a strictly serial process, AE termination is used
to remove the dependency of two bit-streams. By using var-
ious AE termination, EBCOT coding can be processed in
either serial mode or parallel mode. If coding in the serial
mode, three passes scan a bit-plane in serial. After all the bit
planes are scanned, AE terminates the bit stream. If coding

in the parallel mode, three passes scan a code-block as same
as in the serial mode. But AE terminates the bit stream at
the end of each pass. This termination pattern removes the
dependency between passes. As results, parallel mode may
allow three passes scan a bit-plane simultaneously, since
the AE probability interval of any pass doesn’t depend on
each other. Besides, to remove the dependency of the cur-
rent stripe coding on the next stripe, stripe-causal mode is
adopted, i.e. the neighbor contributions from the next stripe
are always considered as 0. The parallel mode is more error-
resilient, although its performance is slightly poorer than the
serial mode (average degration PSNR is only 0.19dB)[3, 5].

3. RELATED WORK

By mapping either serial mode or parallel mode of EBCOT
algorithm (the algorithm is described in Section 2), EBCOT
architecture can be implemented in either serial mode or
parallel mode. A serial mode architecture was introduced
in [2], where three passes scan a bit-plane in serial. In this
architecture, fetching operation is column-based, i.e. in a
clock cycle, one column (4 bits) is fetched from memory
instead of one bit to reduce the number of memory access.
Pixel-Skipping techniques were adopted to skip the unnec-
essary bit evaluation. But Pixel-Skipping techniques cannot
remove the unnecessary bit evaluation completely. So two
parallel mode architectures were proposed in [3, 4], where
three passes scan a bit-plane in parallel and column-based
fetching operation was adopted as same as [2]. Moreover,
the parallelism between 4 coding bits was introduced in [4],
where two bits from different passes may be coded in the
same clock cycle. In all the architectures above, all the bit-
planes are coded in serial. So a memory is needed to as-
sociate the current significance states with a bit-plane. The
parallel mode architectue that doesn’t need the memory for
significance states was proposed in [5], where 4 bits of a
column are coded bit by bit and only one bit is coded in one
clock cycle.

4. THE PROPOSED ARCHITECTURE

To achieve high system throughput, three levels of paral-
lelism are adopted: 1. the parallelism among bit-planes:
all the bit-planes can be processed simultaneously and sig-
nificance state memory can be removed by predicting the
significance state of each bit; 2. the parallelism among pass
scannings: three passes scan one bit-plane in parallel, bits
are coded immediately after they are evaluated and no pro-
cessing time is wasted; 3. the parallelism among coding
bits: When three bits that need to be coded in Pass 1, Pass 2
and Pass 3, respectively, they can be coded in the same clock
cycle simultaneously by adding one extra primitive encoder
for Pass 3.

V - 6

➡ ➡

Load

Logic

Colum−Based

Colum−Based

Primitive

Encoders

Arithmetic

Encoder

FIFO

Separation
 Pass

 Logic

Code−Block Memory

Bit Plane n

Bit Plane n−1

Bit Plane 2

Bit Plane 1

NC Generator

For Bit Plane i
NC Generator

For Bit Plane n−i

Fig. 3. The Proposed EBCOT Architecture

The proposed architecture is shown in Fig. 3. Code-
block memory contains all the DWT coefficients of a code-
block. Load logic model fetches 4 wavelet coefficients in
one clock cycle from the code block memory. MSB of these
DWT coefficients are used by load-logic model to initialize
the significance states of bits. For each DWT coefficient,
its bits above its MSB, including MSB, are initialized as in-
significant and the others are initialized as significant. The
initialized significance states are feeded into Column-based
NC (Neighbor Contributions) generator models for evalua-
tion of neighbor contributions. Note that these initial sig-
nificance states are not the final values that can be used to
calculate the neighbor contributions. More steps are needed
to predict the final values. (Section 4.1 will talk about it in
details).

The Column-based NC generator for bit-plane i is asso-
ciated with a column of the bit-plane i. So n Column-based
NC generators may code all the bit-planes simultaneously.
Here, the bit-plane n− i coding and the bit-plane i coding
are combined together in the pass seperation logic model.
(for simplicity, only bit-plane n− i coding and bit-plane i
coding are shown in Fig. 3). Two reasons motivate us to
adopt this scheme. First, the number of context labels from
the bit plane n− i are usually less than the number of context
labels from the bit plane i since the bit plane n− i may have
more bits coded by Run-Length coding. Run-Length cod-
ing may encode more than 1 bits but it generates only one
context label. This combination will benefit FIFO (No big
variance for data in FIFO). Second, it favors the parallelism
among coding bits when 8 bits are coded together.

As shown in Fig. 4, each Column-based NC generator
can evaluate neighbor contributions for 4 bits simultane-
ously. All the neighbor contributions are used to determine
which pass a bit is belong to and what the context label is.
In primitive encoder model, there are 2 encoders for Pass
1, 2 encoders for Pass 2 and 2 encoders for Pass 3. So the
primitive encoder model may concurrently encode 2 bits in

Memory

Code Block

Right Shift

Current

Stripe

Previous

Stripe

A B C D E

1

2

3

4

5

Context Window 1 Context Window 2

Fig. 4. Column-based DHV Generator

Pass 1, 2 bits in Pass 2 and 2 bits in Pass 3. Note that in our
architecture run-length coder and sign-coder work in par-
allel with the primitive coder above. As results, column-
based NC generators and primitive encoders provide the
parallelism among passes and among bits. The primitive
encoders write their outputs (CX and D) into FIFO. CX and
D in FIFO are consumed by the pipelined high speed AE.

4.1. Removing data dependency

To support the multi-level parallelism, removing data de-
pendency is essential. The data dependency among three
passes can be removed if parallel mode of EBCOT is adopted.
The data dependency among bit-planes and among coding
bits can be removed if significance states can be predicted
before three pass scannings. The change of significance
states can occur in either Pass 1 or Pass 3. As results, Pass
1 depends on itself, Pass 2 depends on Pass 1 and Pass 3
depends on Pass 1 and itself.

To remove these dependency, two context windows shown
in Fig. 4 were adopted, where one column is mapped to the
fourth bit from the previous stripe and four bits from the
current stripe. Column A, B and C forms the context win-
dow 1. Column C, D and E forms the context window 2.
These two context windows are implemented as 5× 5 reg-
ister array. Context window 1 is used to indicate the Pass 1
coding state, i.e. whether the bits are coded in Pass 1 or not.
It can be predicted by using initial significance states and
its bit-value. One bit is coded in Pass 1 if it is insignificant
and any neighbor is significant. After one column finishes
coding, all values are right shifted by one column.

The Pass 1 coding states are shifted to context window
2. In context window 2, all the neighbor contributions and
pass coding states (i.e. which pass the bit is belong to) can
be calculated by using initial significance states from load
logic model, the bit values and Pass 1 coding states. Pass
1 coding states indicate the bits coded in Pass 1. The bit is
coded in Pass 2 if the bit is initialized as significant. The rest
of all the bits are coded in Pass 3. The neighbor contribution
calculation algorithm is shown as follows, where A, B, C,
D, E, 1, 2, 3, 4, 5 are used to identify the location of bits as

V - 7

➡ ➡

shown in Fig. 4.

1. Calculate the significance states after Pass 1 scanning
or Pass 3 scanning.

(a) For C1, D1, E1,
Statea f terPass1 = Stateinitial +Value
For other bits,

i. if it is coded in Pass 1,
Statea f terPass1 = Stateinitial +Value

ii. else Statea f terPass1 = Stateinitial

(b) For D2, D3, D4, D5 and E2, E3, E4, E5

i. if it is coded in Pass 3,
Statea f terPass3 = Stateinitial +Value

ii. else Statea f terPass3 = Statea f terPass1

2. Calculate the neighbor contributions
(a) If Di is coded in Pass 1

i. (Ci−1,Ci,Ci+1,Di+1), Stateinitial.
ii. (Di−1,Ei−1,Ei,Ei+1), Statea f terPass1

(b) If Di is coded in Pass 2, all the neighbors
should be Statea f terPass1

(c) If Di is coded in Pass 3

i. (Ci−1,Ci,Ci+1,Di+1), Statea f terPass1.
ii. (Di−1,Ei−1,Ei,Ei+1), Statea f terPass3

5. EXPERIMENTAL RESULTS

To evaluate the proposed architecture, three-level parallelism
is added to the EBCOT part of JasPer software1 and the al-
gorithm is also verified by Verilog HDL implementation.
Some standard test images (grayscale, code-block size is
64×64) are used to estimate the clock cycles for encoding
one code block. The images ”cats” and ”water” are from
the JasPer software. The estimated clock cycles for three
standard test images (lenna, cats and water) are shown in
Table 1. The processing time comparison with related work
is shown in Table 2, where n is the number of bit-planes
that need to be coded in one code-block. Experimental re-
sults show that the proposed architecture is twice as fast as
the high speed architecture [5] that is the fastest in litera-
tures and can encode one code-block with size N ×N in
only 0.6×N×N clock cycles.

Table 1. Coding One Code-Block (64×64)
Image File lena cats water

Clock Cycles 2318 2386 2257

Compared with [5], the extra hardware (additional prim-
itive encoders and pass-separation logic) are added to data-
path for the multi-level parallelism. To evaluate this over-
head, the proposed architecture is synthesized by using AMS

1The JasPer software [6] is an offi cial reference implementation of the
JPEG-2000 Part-1 codec and has been included in the JPEG-2000 Part-5
standard (i.e., ISO/IEC 15444-5).

0.35µm CMOS technology. The data-path gate count and
memory requirement for the proposed architecture and the
gate count of the overhead are listed in Table 3.

Table 2. Processing Time for a N×N code-block
Architecture [2] [3] [5] Proposed

Time (×N2cycles) 1.3×n n 1.2 0.6

Table 3. Architecture Implementation (n = 10,N = 64)
Memory(bits) bit-plane AE Overhead

6228 43125 57680 9800

6. CONCLUSION

In this paper, a three-level parallel high speed architecture
for EBCOT in JPEG2000 is proposed. The experiment re-
sults show the proposed architecture is twice as fast as the
high speed architecture [5] that is the fastest architecture in
the literatures so far.

7. REFERENCES

[1] M. Boliek, C. Christopoulos, and E. Majani (Editors),
JPEG2000 Part I Final Publication Draft, ISO/IEC
JTC1/SC29/WG1 N2678, July 2002.

[2] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, and
Liang-Gee Chen, “Analysis and architecture design of
block-coding engine for EBCOT in JPEG 2000,” IEEE
Transactions on circuits and systems for video technol-
ogy, vol. 13, no. 3, pp. 219–230, March 2003.

[3] Jen-Shiun Chiang, Yu-Sen Lin, and Chang-Yo Hsieh,
“Efficient pass-parallel architecture for EBCOT in
JPEG2000,” in IEEE International Symposium on Cir-
cuits and Systems, 2002, vol. 1, pp. 773–776, May
2002.

[4] Yijun Li, Ramy E.Aly, Magdy A.Bayoumi, and Samia
A.Mashali, “Parallel high-speed architecture for
EBCOT in JPEG2000,” in 2003 IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, vol. 2, pp. 481–484, April 2003.

[5] Hung-Chi Fang, Tu-Chih Wang, Chung-Jr Lian, Te-
Hao Chang, and Liang-Gee Chen, “High speed memory
efficient EBCOT architecture for JPEG2000,” in IEEE
International Symposium on Circuits and Systems (IS-
CAS 2003), vol. 2, pp. 736–739, May 2003.

[6] Michael D.Adams, JasPer Software Reference Manual
(Version 1.700.0), ISO/IEC JTC1/SC29/WG1 N2415,
Febrary 2003.

V - 8

➡ ➠

