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ABSTRACT

Memory issue is the most critical problem for a high performance
JPEG 2000 architecture. The tile memory occupies more than 50%
of area in conventional JPEG 2000 architectures. To solve this
problem, we propose a stripe pipeline scheme. For this scheme, a
Level Switch Discrete Wavelet Transform (LS-DWT) and a Code-
block Switch Embedded Block Coding (CS-EBC) are proposed.
With small additional memory, the LS-DWT and the CS-EBC can
process multiple levels and code-blocks in parallel by an inter-
leaved scheme. As a result of above techniques, the overall mem-
ory requirements of the proposed architecture can be reduced to
only 8.5% comparing with conventional architectures.

1. INTRODUCTION

JPEG 2000 [1]-[4] is well-known for its excellent coding perfor-
mance and numerous features [5], such as Region Of Interest (ROI),
various kinds of scalabilities, error resilience, and so on. All these
powerful tools can be provided by a unified algorithm in a single
JPEG 2000 codestream. JPEG 2000 adopts the Discrete Wavelet
Transform (DWT) and the Embedded Block Coding with Opti-
mized Truncation (EBCOT) [6] as its core coding algorithms, which
is totally different from the algorithms of JPEG [7]. By use of the
new coding tools, JPEG 2000 outperforms JPEG by more than 2
dB in Peak Signal-to-Noise Ratio (PSNR) [5]. However, the com-
plexity of JPEG 2000 is much higher than that of JPEG. Thus,
hardware implementation is a must for real-time JPEG 2000 ap-
plications. In this paper, we proposed a stripe pipeline schedul-
ing scheme to reduce the memory requirements of the JPEG 2000
encoder. The stripe pipeline scheduling scheme can reduce the
on-chip memory size, which occupies over 50% of chip area in
conventional JPEG 2000 encoder, to only 8.5% comparing with
conventional architectures.

Since hardware acceleration is a must for real-time JPEG 2000
applications, many architecture for JPEG 2000 has been proposed
[8]-[14] All the above architectures focus on how to overcome the
computation complexity, especially the Embedded Block Coding
(EBC). The solutions can be classified into two categories. The
first one is to use multiple EBC engines [8]-[11], which process
multiple code-blocks in parallel. The second one is to increase the
processing rate of the EBC engine [12]-[14] by processing multi-
ple bit-planes in parallel. The major disadvantage of using multi-
ple EBC engines is that this method needs to use multiple code-
block memory, which size is commonly 6 KB (64×64×12) for a
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code-block. Fang et al. [15] proposed a parallel EBC architecture,
which can greatly increase the processing rate of the EBC while
maintain similar hardware cost with architectures that use single
EBC engine. On the other hand, memory issues of the DWT are
also key factors of a JPEG 2000 design. Block-based scan for
DWT [12] [16] is proposed to eliminate the use of tile memory,
which size is commonly 96 KB (256× 256× 12), at the cost of
the increase of memory bandwidth. Although the tile memory is
eliminated, the scan order of the block-based scan is not optimized
such that the memory requirements are still too high. Therefore,
the hardware cost of JPEG 2000 is still too high to let JPEG 2000
take place of JPEG regardless of the large coding gain by use of
JPEG 2000.

In this paper, we proposed a stripe pipeline scheme for the
DWT and the EBC to solve the above problems. The stripe pipeline
scheme takes the throughputs and the dataflows of the DWT and
the EBC into joint consideration. The main idea is to match the
throughputs and the dataflows of the two modules so that the size
of local buffers between the two modules is minimized. Thus,
a Level Switch DWT (LS-DWT) and a Code-block Switch EBC
(CS-EBC) are proposed. The the CS-EBC can process 13 code-
blocks in parallel, and LS-DWT can accomplish multi-level two-
dimensional DWT concurrently. As a result of the stripe pipeline
scheme, the memory requirements are reduce to only 8.5% com-
paring with conventional architectures.

This paper is organized as follows. Section 2 gives an overview
of JPEG 2000. The proposed architecture is described in Sec. 3.
In Section 4, implementation results are compared with the state-
of-the-art JPEG 2000 architectures. Finally, Section 5 summaries
this paper.

2. JPEG 2000 OVERVIEW

In this section, we’ll briefly describe the JPEG 2000 coding sys-
tem, especially the dataflow. Figure 1 shows the JPEG 2000 coding
system. It consists of the Discrete Wavelet Transform (DWT), the
Quantization (Q), the Embedded Block Coding with Optimized
Truncation (EBCOT), and the Rate Control (RC). The EBCOT is
further divided into the Embedded Block Coding (EBC) and the
Rate-Distortion Optimization (RDO). Among all the functional
blocks, the DWT and the EBC are the most critical ones for their
special dataflows and high computational complexities.

Figure 2 shows how an image is decomposed into abstract lev-
els, which include tile, subband, code-block, bit-plane, and coding
pass. The original image is partitioned into several rectangular
tiles, which are independently coded. The DWT decomposes a
tile into NL levels. Except for the NL-th level that has only LL
band, each level has three subband, which are the HL, LH, and
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Fig. 1. JPEG 2000 coding system. It adopts the DWT as the trans-
form algorithm and the EBCOT as the entropy coding algorithm.
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Fig. 2. Decomposition of an image into abstract levels. These ab-
stract levels include tile, subband, code-block, bit-plane, and cod-
ing pass.

HH bands. The HL band is high-pass filtered horizontally, and
then low-pass filtered vertically, and the LH band is exactly op-
posite to HL band. Both directions of the HH band are high-pass
filtered, and the LL band are low-pass filtered in both directions.
In general, the DWT coefficients co-located at each subband are
generated consequently. Figure 3 shows an example of a 8× 8
tile. Each circle represents a DWT coefficient, and the number
within the circle indicates the order it is generated. The order of
the DWT coefficients generated within each subband depends on
the scan order of the DWT engine. However, the co-located DWT
coefficients are always generated consequently.

For the EBC, each subband is further partitioned into code-
blocks. The DWT coefficients in the code-block are sign-magnitude
represented. The code-block is processed in a bit-plane by bit-
plane manner, from the Most Significant Bit (MSB) bit-plane to
the Least Significant Bit (LSB) bit-plane. Every bit-plane has three
coding passes called Pass 1, Pass 2, and Pass 3. A special coding
order called stripe scan is used within any coding pass. A stripe
is a N ×4 rectangle, where N is the width of the code-block. The
coefficients are scanned stripe by stripe from top to bottom in a
coding pass, and column by column from left to right in a stripe.

3. PROPOSED ARCHITECTURE

In this section, the proposed JPEG 2000 architecture is presented.
The block diagram of the architecture is shown in Fig. 4. Seven
Stripe Buffers (SB) are used for the stripe pipeline, each buffer has
256×11 bits. The Level Switch DWT (LS-DWT) generates 256
DWT coefficients for each subband at every pipeline stage. The
resulting coefficients are stored in the SBs, and then processed by
the Code-block Switch EBC (CS-EBC).

3.1. Stripe Pipeline Scheme

In this section, a stripe pipeline scheme for JPEG 2000 is proposed.
The key concept is to design a scheduling that can minimize the
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Fig. 3. Output order of DWT coefficients. The co-located DWT
coefficients in all subbands are generated consequently.
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Fig. 4. Proposed JPEG 2000 architecture. No tile memory is re-
quired in the proposed architecture.

memory requirement while maintain reasonable complexity and
overhead. As described in Sec. 2, the memory issues are arisen
from the mismatch between output dataflow of the DWT and the
input scan order of the EBC. The mismatch can be solved by using
a buffer between the two modules. In conventional architecture
[10], the whole tile and three code-block are buffered. Wu et al.
[16] proposed a Quad Code-Block (QCB) scheduling scheme that
reduces the memory requirements to 1

4 tile and six code-blocks.
However, the memory requirements are still too high. The pro-
posed stripe pipeline scheme can fully eliminate the use of tile
memory and code-block memory. It only requires stripe memory,
which size is 1

16 of a code-block memory for a 64×64 code-block.
The detail of the stripe pipeline scheme is shown in Fig. 5.

Each rectangle represents a computation state of the LS-DWT or
the CS-EBC. The state of LS-DWT is indicated by, for example,
TkLi : Rs−t-L, which means that the LS-DWT is processing left half
of the s-th row to the t-th row in the i-th level of the k-th tile. On
the other hand, the state of CS-EBC is indicated by, for example,
TkCBs−t : Si, which means that the CS-EBC is processing the i-th
stripe of the s-th code-block to the t-th code-block of the k-th tile.
The order of execution is from top to bottom. All the computation
states require 768 cycles except when the CS-EBC is at TkCB0−3
state, which needs 1024 cycles. In fact, the cycles required in each
state is exactly the number of DWT coefficients the CS-EBC must
process.

For the stripe pipeline schedule, seven stripe buffers are re-
quired as shown in Fig. 4. Each stripe buffer is 256 × 11 bits,
where 11 is the bit-width of a DWT coefficient. While the LS-
DWT is writing coefficients into SB-LH0, SB-HL0, and SB-HH0,
the CS-EBC is reading coefficients from SB-LH1, SB-HL1, and
SB-HH1, or vice versa. When the LS-DWT is processing L2 or
the CS-EBC is processing CB0−3, SB-LL must be accessed by
the corresponding module. Therefore, the proposed scheduling
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Fig. 5. Stripe pipeline scheme. The LS-DWT and CS-EBC are
pipelined at stripe level, and therefore the buffer size is reduced to
the same as the stripe size.

only requires about 2.4 Kilo-Bytes (KB) or 1.75 Kilo-Words (KW ),
equivalently.

3.2. Level Switch DWT

To accomplish the stripe pipeline scheduling described above, a
Level Switch DWT (LS-DWT), which can switch between various
decomposition levels, is proposed. The block diagram of the LS-
DWT is shown in Fig. 6. The filter core is a line-based 2-D DWT
architecture. In the following, we will focus on how to extend a
general line-based 2-D DWT filter to a LS-DWT by use of inter-
level buffer.

There are two kinds of inter-level buffer in the LS-DWT, line
buffer for the column 1-D DWT and LL-band buffer for the row 1-
D DWT. The line buffer of the LS-DWT is, in fact, the line buffer
in conventional line-based 2-D DWT. However, the line buffer for
level 1 can not be reused when the LS-DWT is switching to level 2.
The same case happens when it is switching to level 3. Thus, each
level should have its own line buffer. For the line-based 9/7 filter,

Column
1-D DWT

Row
1-D DWT

Line Buffer
(4x(128+64)x14)

LL-band Buffer
((12x128+20x64)x11)

Image
Pixel

DWT
Coefficient

Inter-level Buffer

Fig. 6. Block diagram of the proposed LS-DWT. The LS-DWT
can transform 3 levels in parallel.
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Inter-CB Buffer

Line Buffer
((4x32+9x64)x12)

State Buffer
(13x399x10)

DWT
Coefficient

Embedded
Bit-Strem

Fig. 7. Block diagram of the proposed CS-EBC. The CS-EBC can
process 13 code-blocks in parallel.

four lines are required to be buffered for each level. Therefore, the
additional requirements of the line buffer is 10572 (= 4× (128 +
64)×14) bits. On the other hand, a LL-band buffer is required to
buffer the LL-bands generated in level 1 and level 2. Since the LS-
DWT switches whenever 4096 (16 lines for level 1 and 32 lines
for level 2) DWT coefficients are generated, the LL-band buffer
for each level requires 1024 words. Due to the latency of DWT,
output data for one more stripe pipeline stage in column direction
must be buffered. Thus, each level should buffer 4 additional lines.
Therefore, the memory requirements for the LL-band buffer for
level 1 and level 2 are 16896 (= 12× 128 × 11) bits and 14080
(= 20×64×11) bits, respectively.

3.3. Code-block Switch EBC

In this section, a Code-block Switch EBC (CS-EBC), which can
switch among code-blocks at end of any stripe, is proposed for
the stripe pipeline. The block diagram of the CS-EBC is shown in
Fig. 7. The processing elements are similar to that in [15]. In order
to achieve code-block switch function, additional buffer, which is
called inter-CB buffer, is required to store the coding status that
is required to resume processing the code-block. The CS-EBC is
designed to switch at stripe boundary of code-blocks because the
size of inter-CB buffer is minimized in this case. Besides the inter-
CB buffer, there is almost no overhead to extend the parallel EBC
[15] to the CS-EBC.

The inter-CB buffer can be further divided into the line buffer
for the Context Formation (CF) and the state buffer for the Arith-
metic Encoder (AE). The line buffer stores the last row in previous
stripe of a code-block. Thus, it requires 8448 (= 4×32×12+9×
64× 12) bits for the concurrently processing of 13 code-blocks.
Although there are 19 code-blocks in a tile, only 13 of them must
be processed concurrently. Because CB13−18 were processed af-
ter CB7−12, the line buffer for CB7−12 can be re-used. The same
idea is also applied to the state buffer of the AE. For the AE, the
state buffer contains the coding status of the bit-stream and the ta-
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Table 1. Memory Requirement Comparison. Assume that the tile
size is 256×256 and the code-block size is 64×64.

Architecture
Memory Requirement (KB)

Tile CB DWT EBC Total
Amphion [9] 128 48 - - 176
Andra’s [10] 128 24 - - 152
Wu’s [16] 32 48 - - 80
Proposed 2.4 0 5.1 7.5 15

ble index for each context. The coding status has 56 bits, which
comprises of an interval register (A, 16 bits), a code register (C,
28 bits), a counter (CT , 4 bits), and an output buffer (B, 8 bits).
The table index has 231 bits, which includes index for Pass 1 (14
contexts, 14×7 bits), Pass 2 (3 contexts, 3×7 bits), and Pass 3 (16
contexts, 16×7 bits). The memory requirements for a bit-plane is
399 (= 3×56+231) bits, and therefore it requires 3990 bits for a
code-block with 10 magnitude bit-planes. Finally, the size of the
state buffer is about 6.3 KB (= 13×3990 bits).

4. COMPARISON

To show the performance on memory reduction of the proposed
stripe pipeline scheme, we compare the memory requirements for
DWT coefficients between the DWT and the EBC in various archi-
tectures. The memory requirements depends on the specification
of the architecture. Without loss of generality, we assume that the
tile size is 256×256, and the code-block size is 64×64. The mem-
ory requirements of various architectures are shown in Table 1. In
this table, memory requirements within the DWT and the EBC are
not shown since the scheduling will only affect the tile memory
requirements. In Table 1, the Tile column is the memory size for
storing DWT coefficients, and the CB column is the code-block
memory for the EBC. The DWT column and the EBC column are
the additional memory requirements for the DWT and the EBC to
support the stripe pipeline schedule. By the table, the memory re-
quirements are reduced to only 8.5% comparing with Amphion’s
architecture [9] and 18.8% comparing with Wu’s architecture [16].

There is another important advantage of the proposed stripe
pipeline scheme that the memory requirements are proportional
to the square-root of the tile size. On the other hand, memory
requirements of conventional architectures are proportional to the
tile size. Thus, for tile size of 512×512, the memory requirements
of the proposed architecture is only 4.2%.

5. CONCLUSION

In this paper, a memory efficient JPEG 2000 architecture with
stripe pipeline scheme is proposed. The stripe pipeline scheme
takes the dataflow of the DWT and the EBC into joint considera-
tion. By matching the dataflow of both modules, the tile memory
is replaced by the stripe memory with additional memory require-
ments in the DWT and the EBC. The overall memory requirements
are reduced to only 8.5% of the conventional architecture. For
the stripe pipeline scheme, a LS-DWT and a CS-EBC are pro-
posed. With small additional memory, the LS-DWT can process
multi-level in an interleaved order. The CS-EBC can process 13

code-blocks in parallel. The proposed architecture is suitable for
large tile size since its memory requirements are proportional to
the square-root of the tile size.
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