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ABSTRACT

We describe a robust and self-reconfigurable design of a

spherical microphone array for beamforming. Our approach

achieves a multi-resolution spherical beamformer with per-

formance that is either optimal in the approximation of de-

sired beampattern or is optimal in the directivity achieved,

both robustly. Our implementation converges to the optimal

performances quickly while exactly satisfying the specified

frequency response and robustness constraint in each iter-

ation step without accumulated round-off errors. The ad-

vantage of this design lies in its robustness and self-recon-

figuration in microphone array reorganization, such as mi-

crophone failure, which is highly desirable in online mainte-

nance and anti-terrorism. Design examples and simulation

results are presented.

1. INTRODUCTION

Spherical microphone arrays are recently becoming the sub-

ject of some study as they allow omnidirectional sampling

of the 3D soundfield, and may find applications in multi-

resolution soundfield capture and recreation [4]. In [5], a

modal beamformer design in orthogonal beam-space was

presented. In [3], we proposed a preliminary extension to

allow relatively flexible microphone placements with min-

imal performance compromise. Our main contributions in

this paper are: 1) we balance the trade-off between accuracy

and robustness to allow even more flexible layouts with op-

timal performances; 2) we design a self-reconfigurable im-

plementation to make the beamformer robust to microphone

reorganization; 3) it seamlessly achieves multi-resolution

beampatterns, either regular beampatterns or optimal direc-

tivity, both robustly.

The rest of this paper is organized into four sections. In

section 2, we present the basic principle of spherical beam-

former. In section 3, we formulate the beamformer for dis-

crete array into a finite linear system for specified beam-

forming direction. The solution optimally approximates the

desired beampattern in least mean square (LMS) sense. In

section 4, we optimize the accuracy of approximation under
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robustness constraint. To allow efficient implementation,

we rewrite this constrained optimization problem into an

ellipsoidal form under a linear and a spherical constraints.

This naturally leads to a self-reconfigurable design in the

form similar to [1] and [2], but with different inputs and

optimization goals. Obviously, our implementation inherits

their advantages, such as absence of round-off error accu-

mulation, exact satisfaction of constraints, etc. Design ex-

amples and simulations will be presented in section 5.

2. BACKGROUND

The basic idea of the spherical beamformer is to make use

of the orthonormality of spherical harmonics to decompose

the soundfield arriving at a spherical array. Then the orthog-

onal components of the soundfield are linearly combined to

approximate a desired beampattern [5].

For a unit magnitude plane wave with wavenumber k,
incident from direction ( k, k), the complex pressure field
on the surface ( s, s, rs = a) of the rigid sphere is [6]:

pt( k, k, s, s)

= 4
X
n=0

inbn(ka)
nX

m= n

Y mn ( k, k)Y
m
n ( s, s), (1)

bn(ka) = jn(ka)
j
0

n(ka)

h0n(ka)
hn(ka), (2)

where a is the radius of the sphere, jn is the spherical Bessel
function of order n, Y mn is the spherical harmonics of order

n and degree m. denotes the complex conjugation. hn is
the spherical Hankel function of the first kind.

If we assume that the pressure recorded at each point

( s, s, a) on the surface of the sphere s, is weighted by

Wm0

n0 ( s, s, ka) =
Y m

0

n0 ( s, s)

4 in0bn0(ka)
. (3)

Then making use of orthonormality of spherical harmonics:

Z
s

Y mn ( s, s)Y
m0

n0 ( s, s)d s = nn0 mm0 , (4)

the total output from a pressure-sensitive spherical surface

is:
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P =

Z
s

ptW
m0

n0 ( s, s, ka)d s = Y
m0

n0 ( k, k). (5)

This shows the gain of the plane wave coming from ( k, k),
for a continuous pressure-sensitive spherical microphone, is

Y m
0

n0 ( k, k). Since an arbitrary function F ( , ) can be ex-
panded in terms of spherical harmonics, we can implement

arbitrary beampatterns. For example, an ideal beampattern

looking at the direction ( 0, 0) can be modeled as a delta
function:

F ( , ) = ( 0, 0), (6)

which can be expanded into an infinite series of spherical

harmonics:

F ( , ) = 2
X
n=0

nX
m= n

Y mn ( 0, 0)Y
m
n ( , ). (7)

The weight at each point ( s, s, a) to achieve this beam-
pattern is:

ws =
P
n=0

1
2inbn(ka)

nP
m= n

Y mn ( 0, 0)Y
m
n ( s, s). (8)

For an ideal continuous microphone array, the spherical beam-

former can be steered into any 3D directions digitally with

the same beampattern.

For discrete arrays with finite number of microphones,

the practical beampattern is a truncated version of (7) to

some limited orderN [5]:

FN ( , ) = 2
NX
n=0

nX
m= n

Y mn ( 0, 0)Y
m
n ( , ). (9)

3. DISCRETE SPHERICAL BEAMFORMER AS

FINITE LINEAR SYSTEM

To achieve a regular beampattern of order N (9), a discrete

spherical beamformer with S microphones can be formu-
lated as a finite linear system:

AW = cNBN , (10)

dW = 1, (11)

where (10) defines the beampattern, and (11) the frequency

response to the sound from the beamforming direction. With-

out loss of generality, here we consider an all-pass filter. In

(10), A are the coefficients of the spherical harmonics ex-

pansion of the soundfield in (1):

A = [ A1 A2 · · · AS ], (12)

As =

i0b0(ka)Y
0
0 ( s, s)

i1b1(ka)Y
1

1 ( s, s)
...

iNbN (ka)Y
N
N ( s, s)

i(N+1)b(N+1)(ka)Y
(N+1)

(N+1) ( s, s)

...

iNeff bNeff
(ka)Y

Neff

Neff
( s, s)

, (13)

(s = 1, ..., S.)

Neff is the maximum order with significant amplitude in
the expansion (1). W is the vector of complex weights to

be assigned to each microphone at ( s, s, a):

W =

W (ka, 0, 0, 1, 1)
W (ka, 0, 0, 2, 2)

...
W (ka, 0, 0, S , S)

. (14)

BN is the vector of coefficients of the beampattern of order

N steered to ( 0, 0) in (9):

BN =

Y 00 ( 0, 0)
Y 1
1 ( 0, 0)

· · ·
Y NN ( 0, 0)

0
· · ·
0

. (15)

Common constants are omitted in (13) and (15). In (11),

d is the row vector of the complex pressure at each micro-

phone position produced by a plane wave of unit magnitude

from the desired beamforming direction ( 0, 0):

d =

d1
d2
· · ·
dS

T

=

pt( 0, 0, 1, 1)
pt( 0, 0, 2, 2)

· · ·
pt( 0, 0, S , S)

T

. (16)

In (10), cN is a normalizing coefficient to satisfy the all-pass
frequency response (11). The LMS solution of (10) is:

W =
£
(AHA) 1AH

¤
cNBN . (17)

Then cN can be determined using (11). If we assume (10)
has small residues, from (9), the a priori estimate of cN is:

cN
1

2 kBNk
2
2

. (18)

According to the spherical harmonic addition theorem, cN
is independent of ( 0, 0) and can be simplified easily:

cN
1PN

n=0
2n+1
2 Pn(cos 0)

=
2

(N + 1)2
. (19)
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4. ROBUST AND SELF-RECONFIGURABLE

IMPLEMENTATION

To design a spherical beamformer with finite microphones

under white noise gain (WNG) constraint of 2:

|dW|2 /(WHW) 2, (20)

yet optimally approximate the desired beampattern of order

N as (9), we need to minimize:

min
W

kAW cNBNk
2
2 , (21)

subject to:

dW = 1, (22)

WHW 2. (23)

This optimization can be numerically solved by some black-

box software packages, such as MATLAB function fmin-

con, etc. Another way is to use Tikhonov regularization.

The solution then becomes:

W =
£
(AHA+ 2I) 1AH

¤
cNBN , (24)

where is the regularization parameter, which unfortunately

is not directly related to the WNG constraint. A trial-and-

error strategy can be used in implementation.

The most straightforward way to implement this system

is to precompute all the weights for each pre-defined 3D

direction and store them in a lookup table. This method,

however, is inefficient because of the obvious trade-off be-

tween spatial resolution and memory. In addition, the re-

sulted beamformer is not robust to microphone failure. It

can be shown that the failure of even one microphone may

significantly damage the beampattern.

In this section, we reformulate our problem so that we

can parallel the methods in [1] and [2] to design a self-

reconfigurable implementation which automatically and ro-

bustly converges to the desired beampattern of specified or-

der in any steering directions. We rewrite the object func-

tion into an ellipsoidal form:

min
W

kA×W cNBNk
2
2 = min

W̃

W̃HRW̃, (25)

subject to:

CHW̃ = g, (26)

W̃HW̃ 2 + 1, (27)

where

W̃ =

·
W

W0

¸
, R =

·
AH

cNB
H
N

¸ ·
A

cNBN

¸T
,

C =

d1 0
d2 0
...

...

dS 0
0 1

, g =

·
1
1

¸
.

We know W0 = 1 from (25), however, we include it as
an extra variable into W̃ and its actual value is automat-

ically determined by the constraint (26) in the process of

optimization.

To solve this optimization, we first decompose W̃ into

its orthogonal components:

W̃ =Wc +V, (28)

Wc= C[C
H
C]

1
g. (29)

Wc is the LMS solution to satisfy the linear constraint (26).

The residue is expected to be zero since usually (26) is

a highly under-determined system. Substituting (29) into

(27), we have:

VHV 2 + 1 gH [CHC] 1
g = b2. (30)

Thus, the WNG constraint becomes a spherical constraint

on V. Since RW̃(t) is the gradient of the object function
(25) at step t, the tentative update vector is:

Ṽ(t+ 1) = P̃c[V(t) µRW̃(t)], (31)

V(t) is the scaled projection of Ṽ(t) into the sphere surface
of radius b:

V(t) =
Ṽ(t) for

¯̄̄
Ṽ

¯̄̄2
b2

b Ṽ(t)
|Ṽ(t)|

for

¯̄̄
Ṽ

¯̄̄2
> b2

, (32)

µ is the step size, and P̃c is the null space ofC
H :

P̃c = I C[CHC] 1
CH . (33)

Update the weights:

W̃(t+1) =Wc+
Ṽ(t+ 1) for

¯̄̄
Ṽ

¯̄̄2
b2

b Ṽ(t+1)
|Ṽ(t+1)|

for

¯̄̄
Ṽ

¯̄̄2
> b2

. (34)

We set the initial guess as:

W̃(0) = R 1C[CHR 1C] 1
g, (35)

Ṽ(0) = W̃(0) Wc, (36)

which is equivalent to the solution we get in section 3. If the

resulting WNG is within constraint, the iteration will stay

with this solution, otherwise, it will start the constrained

optimization process, both automatically. At each step, the

constraints (26) and (27) are satisfied exactly. In addition,

similar to the methods in [1] and [2], round-off errors don’t

accumulate. This iteration is independent of the actual sig-

nal processing rate, so it may be implemented more effi-

ciently as a parallel unit with other processors.
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(a) (b)

Fig. 1. (a) The random layout of 64 microphones on a

sphere of radius 10cm. (b) The unconstrained beampattern

of order four at 1KHz (WNG -41dB).

(b)(a)

Fig. 2. Constrained optimizations. (a) Optimal beampattern

of order four under the WNG constraint for the same setup

in Fig. 1. (b) Optimal directivity under theWNG constraint.

5. SIMULATIONS

As a typical example, we use a random layout of 64 micro-

phone on a spherical surface as shown in Fig. 1(a). Using

the solution (17), the beamformer of order four is shown

in Fig. 1(b), which is unrobust if we require a minimum

WNG of -6dB. Fig. 2(a) shows the optimal approximations

of the regular beampattern of order four under the WNG

constraint. There is minimal difference between the beam-

patterns in Fig. 2(a) and Fig. 1(b). The comparisons of

residues are shown in Fig. 3.

If we desire optimal directivity, we can approximate the

ideal beampattern as (7). In practice, we just need to ap-

proximate an order high enough1, such as order 7 in this

case. Fig. 2(b) shows the resulted beampattern. We use di-

rectivity index (DI) to evaluate the directivity. Fig. 4 shows

the iteration process using unit step size. The system con-

verges quickly. It also demonstrates our implementation can

robustly reconfigure itself in microphone reorganization.

6. CONCLUSIONS

This paper describes a robust and self-reconfigurable design

of spherical microphone arrays for beamforming. Our de-

1It can be pre-determined strictly for given spherical microphone array.

This will appear in the extended version of this paper.
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Fig. 3. (a) Comparison of beampattern coefficients with

c4B4. (b) Residue comparison between Fig. 2(a) and Fig.
1(b). Both plots show the absolute values.
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Fig. 4. Optimal directivity under WNG constraint. (a) The

comparison of resulted beampattern and regular beampat-

tern of order 7. (b)The iteration process.

sign achieves optimal performances with multi-resolution

beampatterns. Design examples and simulation results are

presented.
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