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ABSTRACT

A method for blind deconvolution of ultrasound and other

inverse-scattering problems is presented. The method can

be applied to one, two or three dimensional backscattered

data. This paper focuses on the one and two dimensional

cases. The method is based on a subspace-based blind de-

convolution algorithm. In the two dimensional case, the

blind deconvolution produces an unknown linear mixture

of the reflectivity profile. An entropy minimization algo-

rithm is used to retrieve the reflectivity data from the mix-

ture. This method improves the lateral and axial resolution

compared to conventional ultrasound B-scans.

1. INTRODUCTION

A model of ultrasonic backscattering that is often used is

based on a linear convolution [1]� � � � � 
 
 
 
 � � � �� � � � � � � � � � � � � � � " � � $ & �' � ( � ( � ( �
(1)

where � � � � � � is the lateral distribution of the transmitted ul-
trasound wave, ' is the speed of sound through the tissue, *
is the average attenuation constant of the tissue in the ultra-

sound propagation path, and � � � � � � � � is the tissue reflec-
tivity. The reflected signal for the one-dimensional problem

is � � � � � 
 � � � � " � � $ & �' � ( � (2)

If " � � � and � � � � are known, the tissue reflectivity � � � � can
be identified by using deconvolution methods [2, 3, 4, 5]. In

practice, " � � � cannot be accurately measured, so most recent
approaches for ultrasound deconvolution have been based

on blind deconvolution, which does not require knowledge
of the transmitted ultrasound pulse. This paper is organized

as follows. A method for ultrasound deconvolution based

on second-order statistics is described in Section 2. In Sec-

tion 3, a method for entropy minimization of an unknown

mixture is presented. This method is used to demix the out-

come of a two-dimensional second-order blind deconvolu-

tion. Several simulations are given in Section 4. Section 5

concludes this paper.

2. SECOND-ORDER BLIND DECONVOLUTION

2.1. One Dimensional Case

Equation (2) can also be expressed as a standard discrete-

time convolution: 0 � 2 4 5 7 9 (3)

where 2 is the tissue reflectivity to be estimated with length:
, 5 is the transmitted pulse with length ; , 0

is the received

signal with length < � : 7 ; $ > and 9 is the measurement
error with length < . Furthermore, (3) can be rewritten in
matrix form as

0 � ? 5 7 9 , where

? �
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Subspace methods can be used to estimate 2 as in [6, 7].
2.2. Two-Dimensional Case

We assume the transmitted pulse is confined to a two-dimensional

space, which we can model as a ; ` ; pixel array (other di-
mensions can be chosen as well). The measured signal can

be expressed as:
0 � c 4 e 7 9 (4)

where 0 � S � � E � F F F � � < $ > � V X � < � : 7 ; $ >
c � BCD � � E � E � F F F � � E � ; $ > �

...
. . .

...� � : $ > � E � F F F � � : $ > � ; $ > �
N PQ
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The elements in the backscattered received signal can be

expressed as:2 � 4 � � 7 9 ; <=
7 > 7 9 @ B

C D F=G > H � � I � K � M � 4 � I � K � 0 ' � 4 � (5)

where I G S 7 � U W Y � 
 � 4 � / � , I G [ ] � U ` b � 4 � � � � � , and4 � 
 � � � � � + � � . This model more accurately accounts for
lateral variations in both the reflectivity and the transmitted

pulse. Note also it corresponds to a discrete-time version of

(1) limited to two dimensions. This model can be seen to

be equivalent to Jensen’s model for ultrasound backscatter

[8]. The transmitted ultrasound pulse matrix � represents
the pulse-echo field in Jensen’s model and can be rewritten

as a vector f with dimension � g h � :f � % f F � � � f C - .
(6)

where f S � % � � 
 � j � � � � � � � � � � j � - . Therefore, (4) can be
rewritten as l � m f 0 "� % m F � � � m C - f 0 " (7)

where m S is a Toeplitz matrix having the same structure asr but formed by the j th column of s . Equation (7) is sim-
ilar to the one-dimensional problem. We assume " to be
white noise with variance t gu and the transmitted pulse f to
be persistently exciting with full rank autocorrelation ma-

trix v x � z % f f . - . Hence, the autocorrelation matrix of l
is expressed as v | � m v x m . 0 t gu } � (8)

The first term on right-hand side, m v x m . , has rank � g , so
the rank of the nullspace of v | is � + � � g � . In practice, v |
can be estimated using the received signal vectors given byl � � % 2 � � 
 � � � � 2 � � + � � � - . � � � � � � � � � � (9)

as �v | � F� � ��
> F

l � l .�
. We define the noise subspace ofm v x m . as the + h � + � � g � matrix � � . The columns

of m span the � g -dimensional signal subspace which is or-
thogonal to the noise subspace. Therefore, we have� .� m � � � � D C � � � C � (10)

Let � � � S � � � � j � j 0 / � � � � � � j � � � � � � � � � � (11)

be a
/ h � + � � g � submatrix of � � . Then� .� � S � � � � � � D C � � � j � � � � � � � � � � � � � � � � � � (12)

where � � � % M � 
 � � � � � � M � / � � � � � - . . Then � �
can

be estimated by solving the equations�� .� � S �� �   � � � D C � � � j � � � � � � � � � � � � � � � � � � (13)

where the �� � � S are submatrices of the noise subspace eigen-
vector matrix �� � derived from �v | and�� � � % �M � 
 � � � � � � �M � / � � � � � - .

(14)

Let �s � % �� F �� g � � � �� C - . One possibility is to set the
columns of �s equal to the eigenvectors associated with the
smallest � eigenvalues of

v ¡ � C= S > F �� � � S �� .� � S (15)

However, there is no guarantee that �s � s . In fact, �s is a
linear mixture of s . Equation (13) implies that �� � � S has an� -dimension nullspace. Therefore any solution of (13) will
lie in that nullspace spanned by �� F � �� g � � � � �� C . The algo-
rithm described below can be used to obtain s by demixing�s .
3. ENTROPYMINIMIZATION ALGORITHM

For the sake of the following discussion, it is assumed that

the probability distribution of pixels in ultrasound images is

approximately binary. Consider the following theorems for

binary random variables: (The corresponding proofs can be

derived from chapter 15 in [9])

Theorem 1 Assume £ S � j � � � � � � � � � + are + binary ran-
dom variables. Then a linear combination ¤ � � �S > F ¥ S £ S
will have an entropy that is greater than the entropy of any
of the £ S . That is, ¦ � ¤ � § ¦ � £ S � � j � � � � � � � � + .
Theorem 2 Assume £ is an image matrix with dimension+ h � . Each column in £ is a realization of a binary
random variable © S � j � � � � � � � � � � . Let « be a linear
mixture of £ , i.e., each column of « is a linear combination
of the columns of £ . If a vector ¬ is formed by a linear
combination of the columns of « , i.e., ¬ � « ® , where ® �% ¥ � 
 � ¥ � � � � � � ¥ � � � � � - . . Then the entropy of ¬
has no more than � local minima and each local minimum
of « ® corresponds to a column of £ .
These theoremsmake it possible to estimate the columns

of a binary image given an image whose columns are a mix-

ture of the binary image.
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3.1. Entropy Estimator using Kernel-ShapedHistogram

Assume � is a random variable with continuous probabil-
ity density function � � � � , then its differential entropy � � � �
is defined as � � � � 	 � 
 � � � � � � � � � � � � � � . If we divide
the range of � into bins of width � and assume the den-
sity is continuous within the bins, it can be shown that we

can use � � � � � � � � � � to approximate � � � � [10], where� � � � is the discrete entropy of � . Assume a histogram
contains � bins. Given a center  ! and a bin width � , we
can define each bin of the histogram. The " th bin is de-
fined to be the interval #  ! � % � &  ! � % � � & + - " - � . For
samples � 0 & 2 2 2 & � 4 , we define 5 ! to be the number of� 6
falling in the interval #  ! � % � &  ! � % � � , then we have5 ! 	 8 46 9 0 ; = ? A B D EF G , where H 	 % � and ; � � � is the

kernel function. Let I ! 	 J EK LE M O J E , then the differentialentropy is defined by� � � � 	 � RS! 9 0 I ! � � � � I ! � � � � � � (16)

3.2. Steepest Descent Algorithm

Each column in UV is mixture of the columns in the tissue
reflectivity matrix V . Assume the demixing vector is W , the
reconstructed signal is X 	 UV W , where W 	 # Z � \ � 2 2 2 Z � � �+ � a b and X 	 # d � \ � 2 2 2 d � f � + � a b . The vector X will
have minimum entropy if W is the optimal demixing vectorW h j l . In this case X will correspond to one of the columns
of V . Other columns of V will correspond to local minima
in the entropy cost function. The cost function m � W � used
to minimize entropy is simply the entropy of X m � W � 	� 8 R! 9 0 I ! � q I ! , where � is the number of bins and s is
the length of demixed signal. A Gaussian function is used

as the kernel function ; . The new vector tW is computed astW 	 W � u w y z | }w | , where w y z | }w | is computed as:~ m~ W 	 � RS! 9 0
� ~ I !~ W � q I ! � ~ I !~ W � (17)

We have~ I !~ W 	 � 8 � B 0� 9 � � � � �� � | B D EF � �� �F �� � ��� 8 � B 0� 9 � ; � �� � | B D EF �� � RS6 9 0 � B 0S � 9 �
� � � U� � W �  6

H � U� �H � ��
(18)

where U� � 	 # U� � � & \ � 2 2 2 U� � � & � � + � a , H equals the bin
width, � � � � 	 w � z � }w � and

� 	 8 R6 9 0 8 � B 0� 9 � ; = �� � | B D AF G .
Due to the high correlation between two adjacent columns

in an image, we cannot deflate W ! � 0 from W � � � 	 + & 2 2 2 & " � .

Here, W � corresponds to the demixing vector, where � in-
dexes the chronological order in which successive image

columns are found. It is not difficult to consistently find

the column corresponding to the global minimum entropy.

It is however harder to converge to a column having a lo-

cal minimum entropy. If we assume a demixing vector has

been found, we can find a new demixing vector if the step

size is small and if the initial estimate of the new vector is

given by W z � }� 	  W � B 0 � ¡ , where  W � B 0 is the previouslyidentified demixing vector and ¡ is a noise vector. Once all
image columns are found a registration algorithm is applied

to reconstruct the image. Columns are also scaled so that

adjacent columns have suitably matching contrasts.

4. SIMULATIONS

A ¢ \ \ £ + � synthetic image ¤ was used to model the tissue
reflectivity. In the first experiment, the transmitted pulse ¥
was generated as a + � £ + � random matrix. The received
signal was a two-dimensional convolution of ¤ and ¥ . The
outcome of the two-dimensional blind deconvolution pro-

duced the mixed reflectivity matrix which was subsequently

demixed using the minimum entropy method. Fig. 1 shows

that the reconstructed ¤ matches the original image quite
closely. The second experiment used Jensen’s Field II Mat-

lab package to generate simulated backscattered ultrasound

[11]. A realistic tissue phantom was generated by map-

ping each pixel in ¤ to randomly located point scatterers
in a ¦ £ � § � mm region. The amplitude of a given point
scatterer was proportional to the corresponding pixel ampli-

tude in ¤ . A 16-transducer array was created in the Field
II program and was used as both the transmitter and re-

ceiver. The center frequency of each transducer was 5MHz

and the sampling rate was 100MHz. To generate a random

pulse-echo field, each transducer was excited by a statisti-

cally independent random pulse. The dimension of ¥ was+ � £ + � . A 16-line image was obtained using the backscat-
tered data produced by Field II and the blind deconvolu-

tion/minimum entropy algorithm. The result is shown in

Fig. 2. Since ¥ is only an approximation to the real pulse-
echo field, there is some visible distortion between the re-

constructed image and the real image. A conventional B-

scan was then obtained using the Field II program using the

same 16-element array. The blind deconvolution image has

considerably more resolution than the conventional B-scan

(Fig. 2).

5. CONCLUSION

An algorithm for solving inverse scattering problems in ul-

trasound was described. This approach has the potential to

improve on the resolution available using conventional lin-

ear arrays.
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Fig. 1: Experiment 1.
(a) Original reflectivity; (b) Outcome of 2D Blind

Deconvolution; (c) Reconstructed Image
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Fig. 2: Experiment 2.
Field II simulations: (a) Reconstructed Image using blind

deconvolution/minimum entropy; (b) Conventional B-scan.
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