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ABSTRACT

Audio source localization in reverberant environments is dif-
ficult for automated microphone array systems. Certain features
observable in the audio signal, such as sudden increases in audio
energy, provide cues to indicate time-frequency regions that are
particularly useful for audio localization, but previous approaches
have not systematically exploited these cues. We learn a mapping
from reverberated signal spectrograms to localization precision us-
ing ridge regression. The resulting mappings exhibit behavior con-
sistent with the well-known precedence effect from psychoacous-
tic studies. Using the learned mappings, we demonstrate improved
localization performance.

1. INTRODUCTION

Source localization is an important basic problem in audio pro-
cessing, but existing algorithms perform poorly in reverberant en-
vironments [1]. Techniques that assume an anechoic environment
become much less reliable in reverberant environments, and tech-
niques that try to compensate for the reverberation by learning a
dereverberating filter are very sensitive to even small changes in
the acoustic environment [2].

To allow for source motion, most localization systems com-
pute localization cues based on short time segments of a few tens
of milliseconds and combine these cues using a source motion
model. In such systems, either the low-level cues themselves can
be improved, or the means by which the cues are combined can
be improved. This paper focuses on the latter area, learning an
improved uncertainty model for the low-level cues. We use cues
from the reverberated audio to predict the uncertainty of localiza-
tion cues derived from small time-frequency regions of the array
input. Any localization cue can be used with our approach, but in
this paper we use time delay of arrival (TDOA) estimates based on
cross-correlation in a set of time-frequency regions.

We make three contributions. First, we devise a method that
uses recorded speech and simulated reverberation to generate a
corpus of reverberated speech and its associated localization error.
Second, we use this corpus to learn mappings from the reverber-
ated speech to a measure of localization uncertainty and demon-
strate its utility in improving source localization. Third, we make
a connection between the mappings learned by our system and the
precedence effect, the tendency of human listeners to rely more on
localization cues from the onsets of sounds. While other systems,
such as [3] and [4] have employed heuristic mappings or mappings
that approxmate the ML weighting, we believe that this paper is the
first attempt to learn such a mapping from a training corpus.

0-7803-8874-7/05/$20.00 ©2005 IEEE

IV -1125

2. BACKGROUND

2.1. Array processing

Cross-correlation is a standard technique for TDOA estimation in
array processing. To estimate a TDOA between two microphones,
the two signals are cross-correlated, and the lag corresponding
to the maximum cross-correlation is assumed to be the TDOA.
Attempts to improve TDOA performance in reverberant environ-
ments fall into two broad categories — some systems attempt to
build in robustness to reverberation at a very low level and some
attempt to improve the way in which multiple localization cues are
fused into a final location estimate.

In the first category, [1] reviews much of the work relevant to
microphone arrays. In particular, filtering the signals before cross-
correlating can increase robustness to reverberation. The phase
transform, in which the microphone signals are whitened before
cross-correlation, is one popular technique for increasing robust-
ness to reverberation. After whitening, no single frequency dom-
inates, and that the effects of reverberation cancel out when aver-
aged over many frequencies. Another technique is to use the ML
solution for TDOA estimation by doing cross-correlation after ap-
plying a filter that weights each frequency according to its SNR.
In practice, however, the SNR is usually unavailable. Another ap-
proach is to use detailed models of the reverberation to undo its
effects. [5] learned detailed models of the cross-correlation wave-
forms corresponding to a small set of training locations in a room,
but no results were presented to suggest how well the approach
generalized to novel locations. [2] shows that the fine structure
of the reverberation effects in a room can vary greatly and unpre-
dictably even over distances of tens of centimeters, so it is unclear
how robust methods in this thread can be.

In the second category, [4] trained a neural network to fuse
multiple audio and visual cues to localize a sound source, and [3]
engineered a number of heuristics, including a simple version of
the precedence effect, into a system for combining multiple audio
localization cues. These systems demonstrate the potential for im-
proving cue fusion; however, [4] used only a few audio features
to control fusion, and it is unclear how the heuristics in [3] were
chosen. Our technique falls into this category, and it provides a
principled way of fusing cues based on mappings learned from a
training corpus.

2.2. The precedence effect

The precedence effect, also known as the “Haas effect” or the “law
of the first wavefront,” is the psychoacoustic effect in which the
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Fig. 1. Empirical justification for the precedence effect. On the
left is a spectrogram of the reverberant speech received at one of
the microphones in the array. On the right is the corresponding
map of the empirical localization precision (in dB) for each time-
frequency bin. Sudden onsets in the spectrogram, such as those at
0.7 seconds and 1.4 seconds, correspond to time-frequency regions
with high localization precision.

apparent location of a sound is determined largely by the localiza-
tion cues from the initial onset of the sound [6, 7]. It has been
argued that the precedence effect improves people’s ability to lo-
calize sounds in reverberant environments. Because direct path
sound arrives before any reflections, initial onsets will tend to be
less corrupted by reverberation than subsequent sounds.

Although the basic purpose of the precedence effect seems
straightforward, the details are not clear. The notion of an “on-
set” is imprecise, although recent progress has been made in [§]
in determining the time-scales over which the precedence effect
operates. In addition, most studies have focused on stimuli such
as click trains or noise bursts, and it is unclear how to apply their
findings to more natural sounds. Studies on human infants and
young puppies (reviewed in [6]) found no evidence of the prece-
dence effect, and studies on young children have found the effect
to be much smaller. Together with the studies of adults, this sug-
gests that the precedence effect may be learned over the first few
years of life. The imprecision of the standard description of the
effect and the possibility that children learn the precedence effect
suggest that it may be fruitful to apply a learning approach to the
problem of audio source localization in reverberant environments.

3. METHODS

Our goal is to learn an association between the audio signal and
the localization precision, which we define to be the reciprocal of
the empirical localization error. To do so, we generate a training
corpus consisting of a set of spectrograms of reverberated speech
signals and a time-frequency map of the localization precision over
the course of these speech signals as shown in Figure 1. We then
compute a set of filters that estimate the localization precision from
the spectrogram representation of the reverberated audio.

3.1. Corpus generation

We generate the training corpus by using the image method of re-
verberation modeling [9] to simulate a room containing one speech
source and two microphones. The simulation, which treats each
wall of the room as a sound “mirror” with a frequency-dependent
absorption coefficient, includes the effects of reverberation, and
we add stationary noise to model sounds such as computer fans
and ventilation systems. We synthesize N, realizations of the ut-
terance, each with the speech source and microphones in a differ-
ent location in the room, and calculate the localization precision
over all realizations.
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(b) Broadband precision calculation

Fig. 2. An illustration of the narrowband and broadband mappings
for frequency band 15. In 2(a) an FIR filter estimates the localiza-
tion precision as a function of spectrogram bin 15. In 2(b) an FIR
filter estimates the localization precision as a function of all spec-
trogram bins. The dashed lines indicate that to estimate confidence
for all times, the mapping is applied at all time offsets.

More formally, we start with a single speech signal, z(¢), and
randomly generate [N, simulated room configurations. We repre-
sent these configurations as filters Hy, (4, t), wheren € {1... N, }
represents the room realization and 5 € {1,2} represents the i*"
microphone signal. Passing x(t) through H,(t,4) and adding
noise signal z,(Z,t) yields y.(7,t), a set of reverberated speech
signals. We then pass yy,(4,t) through a mel-scaled filter bank,
yielding yn(i,t, f), f € {1...Nys} where Ny is the number
of bands in the filter bank. We calculate cross-correlations be-
tween time-windowed segments of the two channels of y,, (7, ¢, f),
and assign the time delay of the maximum cross-correlation to
dn (u, f), where frame index w is replaces the time index ¢. Finally,
we calculate e(u, f) = 3~ SN (A, f) = dnyre (u, £))?, the
localization error variance, and p(u, f) = —10 * logio(e(u, f)),
the localization precision (in dB). We calculate a speech spectro-
gram, sy (i, w, f) from y,, (2, ¢, f) by calculating the energy (in dB)
of time-windowed segments. Figure 3 contains block diagrams de-
scribing these calculations.

3.2. Filter learning

We then use ridge regression [10] to learn FIR filters that estimate
the localization precision (in dB) from the reverberated spectro-
gram (in dB). In this paper, we examine two different forms for
these filters. In the first case, which we call a narrowband map-
ping, we learn a separate FIR filter from each frequency band in
the spectrogram to the corresponding frequency band in the local-
ization precision output as shown in Figure 2(a). In the second
case, which we call a broadband mapping, we learn a separate FIR
filter for each band of the localization precision output, but in each
case the input comes from all frequencies of the input spectrogram.
This case is illustrated in Figure 2(b). We chose to examine the
narrowband case because, for the case of stationary signals, each
frequency band is uncorrelated with all other frequency bands, and
thus the narrowband mapping should be sufficient in this case. Al-
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Fig. 3. Spectrogram and TDOA processing block diagrams (see
text).

though speech is nonstationary, this narrowband mapping provides
a useful baseline against which to compare. The broadband map-
ping subsumes the narrowband mapping and should be able to cap-
ture cross-frequency dependencies that may arise from the nonsta-
tionarity of speech.

For the narrowband mapping with causal length /. and an-
ticausal length l,., we solve Ny regularized linear least-squares
problems of the form zg = A¢bg, f € {1... Ny} where

zg = (..p(u, Hplu+1,)..9)7
s(u—le, f) s(udl—lc, f) ... s(u+lac, f) 1
Ap=|s(u+1-1c/f) s(u+2—1lc f) w+1+4lge, f) 1
24 1lge, f) 1

s ) coos(
stut2—le, f)  s(u+3—1le, f) ... s(u+t

1)

and by is an FIR filter with (Ic + lac + 1) taps stacked with a
DC component.

For the broadband mapping, we solve N regularized linear
least-squares problems of the same form as in the narrowband case,
but with each row of A¢ consisting of a concatenation of spectro-
gram values from all frequency bands and with by representing an
FIR filter with (I. 4 lac + 1) * Ny taps stacked with a DC compo-
nent. For both types of mapping, the ridge regression A parameter
is set through cross validation.

When applying this technique to localization, the only compu-
tational costs (beyond the basic TDOA calculations) are of com-
puting a spectrogram on the incoming audio signal and applying
a set of short FIR filters to that spectrogram. Because the signals
that we regress between, the spectrogram and the mean square er-
ror, do not depend on the detailed structure of the reverberation,
our technique is robust to changes in location in the room.

4. RESULTS

In this evaluation, we use audio sampled at 8 kHz, and we use a
mel-scaled filter bank with Ny = 30 frequency bands centered
from 333 Hz to 3700 Hz. The frame rate for our spectrogram
and for our TDOA estimates is 267 frames per second. We use

Method RMS TDOA | RMS angular

error (ms) error (degrees)
True precision 0.28 13.9
Broadband mapping 0.29 14.3
Narrowband mapping 0.31 15.4
Scalar mapping 0.31 154
Uniform weighting 0.35 17.4

Table 1. Root-mean-square (RMS) localization error for different
learned mappings. The broadband filter achieves an error nearly as
small as is achieved using the true (empirically determined) preci-
sion.

17 minutes of speech for training, and a separate 90 seconds of
speech for testing. Our simulated room is roughly 4m x 7m X
2.3m and has a reverberation time of roughly 300 ms.

4.1. Localization results

Table 1 shows the decrease in localization error achieved by our
technique. Test data, generated from different utterances and in
a different location than any of the training data, was synthesized
in same simulated room used for the training data, generating a
test spectrogram, S¢est (u, f), and a set of test TDOAS, diest (u, f).
The mappings learned according to the method in Section 3.2 were
applied to stest(u, f), yielding an estimated localization precision
map, pest(u, f). Assuming independent errors in different time-
frequency regions, the minimum-variance estimate of the TDOA is
to take a weighted mean of all diest(u, f), where the weights are
proportional to p(u, f). Since we do not have access to the true
p(u, f) in practice, we use our pest(u, f). Table 1 shows root-
mean-square (RMS) localization error achieved by each method
when fusing TDOA estimates over 0.5 second audio segments.
The angular error associated with this TDOA error depends on the
array geometry; numbers in the table assume a microphone spac-
ing of 40 cm.

Each row shows the performance of a different method of es-
timating precision information. The first row, “True precision,”
shows results using the empirically determined (ground truth) pre-
cision of each time-frequency region in the test set. This is the best
that can be done (under our independent error assumption) with
the given localization cues and acoustic environment. “Broadband
mapping” and “Narrowband mapping” are the mappings described
above. “Scalar mapping” is a simple special case of the narrow-
band filter using only one tap. “Uniform weighting” uniformly
weights each time-frequency region; it corresponds roughly to the
phase transform described in Section 2. In all cases, variants of our
technique outperform the uniform weighting, and the broadband
mapping achieves nearly the same error as using the empirically
determined precision.

All of the errors, including the error when using ground truth,
are large because we are computing separate TDOA estimates for
each frequency band and combining them using our estimated pre-
cisions. We chose to do this because it has a straightforward in-
terpretation in which we are combining multiple estimates with
known variances to compute an optimal estimate, but it does not
achieve the best possible performance. We are currently working
on using our estimated precisions in a generalized cross-correlation
framework, in which our weightings do not have as obvious an in-
terpretation, but which should yield lower errors for all experimen-
tal conditions.
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Fig. 4. Narrowband filters. Left shows a representative subset
of the learned filters. Right shows a schematic decomposition of
the learned filters. Each of the narrowband filters on the left can
be viewed as a linear combination of a low-pass filtered impulse
(top) with a band-pass filtered edge detector (middle). The bottom
curve shows the linear combination of the top two curves, which
is qualitatively similar to the filter for bin 25.
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Fig. 5. Learned broad-band filters for two filter bands. These filters
have most of their energy in the frequency bin whose precision
they are estimating, but because of the non-stationarity of speech
there is energy across many frequency bins. Left is frequency bin
15, centered at 1316 Hz. Right is frequency bin 25, centered at
2618 Hz.

4.2. Relationship to the precedence effect

Figure 4 (left) shows the learned FIR filters for a representative
subset of the filter bands. In all three cases the filter is approxi-
mately a superposition of a low-passed delta function and a band-
passed edge-detector, as depicted schematically in Figure 4 (right).
The low-passed delta function component indicates that louder
sounds provide better localization cues, which is to be expected in
the presence of additive noise, where the ML frequency weighting
is proportional to the SNR and the SNR in our scenario is roughly
proportional to the signal energy. The band-limited edge-detector
can be interpreted as an onset detector, which is consistent with
the precedence effect that has been studied extensively in psychoa-
coustics. The relative amplitudes of the impulse and the edge de-
tector reflect the relative importance of these two effects at each
frequency. In our scenario, SNR effects dominate at low frequen-
cies, while precedence-like effects dominate at higher frequencies.

Our results are qualitatively similar to the maximum likeli-
hood frequency weighting and the precedence effect, but they go
beyond that by learning structure that is specific to the speech sig-
nal itself. For example, while the broadband mappings are mostly
localized around the frequency whose localization precision they
are estimating, there is energy across the entire spectrum in some
of the filters, most obviously in bin 25 in Figure 5 (right). Ad-
ditionally, while there have been studies of the time-scales over
which the precedence effect operates, most of these have used sim-
ple sounds such as click trains or noise bursts, and it is not clear
how to generalize these findings to speech sounds. Our system
has implicitly learned the characterization of an “onset” that can
provide precise localization.

5. CONCLUSIONS

This paper described a simple, practical method for improving au-
dio source localization. We have demonstrated that the precision
information provided by our technique reduces localization error
compared to other, simpler techniques. In addition, the learned
mappings are consistent with the precedence effect in that they are
sensitive to sudden increases in audio energy. While it is impossi-
ble for the simple model we have learned to model all of the sub-
tleties of the precedence effect, the similarities are encouraging.
Future work will consist of relaxing the linear-Gaussian assump-
tion implied by our use of FIR filters. While our linear FIR model
is adequate to capture simple relationships between the spectro-
gram and localization precision, richer models should allow us to
make use of more of the structure of human speech.
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