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Radio telescopes based on large phased arrays form an inter-
esting application area for array signal processing. LOFAR is a
large low frequency (10Mz–240MHz) array consisting of 13,000
antennas grouped into 50 stations, currently under construction in
the Netherlands. Data from a 60-element test station of LOFAR is
available to evaluate the performance of calibration and imaging
algorithms. In this paper we apply the Robust Capon Beamformer
(RCB) to make images of the sky from measured data, and com-
pare them to the classical Fourier-based images. The RCB takes
uncertainty in the calibration into account. Instead of the usual
spherical uncertainty sets, we have also derived a more constrained
uncertainty set specifically for imaging with the RCB. The results
are images with a higher dynamic range than classical or Capon
beamforming. Additional simulations confirm that the images are
more accurate.

1. INTRODUCTION

Future radio telescopes will be based on massive phased arrays,
typically with 10,000s to 100,000s elements, dispersed over sev-
eral locations. A major challenge for arrays of this size is to find
efficient algorithms for calibration and imaging.

An example of such a telescope, currently under construction,
is LOFAR (Low Frequency Array) [2, 3]. It will consist of 13,000
antennas grouped into 50 stations. Data is processed both at sta-
tion and central level. At station level the signals are combined
(beamformed) to act as a single sensor for the central level. An
Initial Test Station (ITS) for LOFAR has been built consisting of
60 antennas operating in the 10MHz–40MHz range, and data is
available to test algorithms for calibration, imaging and interfer-
ence mitigation.

Radio astronomical imaging has always been based on what
is known in array signal processing as classical (or Fourier-based)
beamforming. In a previous paper, Leshem and Van der Veen have
considered the use of Capon beamforming [4], but actual images
have not been shown. In this paper we discuss the application of
the Robust Capon Beamformer (RCB) [5–7] and test it on mea-
sured data from the ITS. RCB can use an uncertainty set to de-
scribe the calibration error. We have derived a specific uncertainty
set to improve the imaging. Simulations on artificial data show
that the images made by the Robust Capon Beamformer are closer
to the model than the classical and the Capon beamformer.

The calibration of LOFAR at the central level consists of it-
eratively solving for a model including astronomical sources, the
time-varying ionosphere, and instrument parameters (a general-
ized SELF-CAL loop). The good performance of the Robust
Capon Beamformer in the presence of calibration errors makes it
a candidate to be included in the LOFAR calibration either as an
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initial step or as part of the loop.

2. DATA MODEL
Assume we have a telescope array with p elements. We consider
the baseband signals xi(t) received at the antennas i = 1, · · · , p in
a sufficiently narrow subband. The p× 1 array output vector x(t)
obtained by stacking the signals xi(t) has a time-varying covari-
ance matrix R(t) = E(xxH), because the telescope array fixed on
earth has a slowly rotating view of the sky. For imaging, the as-
tronomer is interested only in the non-redundant off-diagonal en-
tries of R(t), which contain the astronomical “visibilities”. The
measurement noise covariance matrix is assumed to be diagonal
and can therefore be ignored in this paper.

The telescope signals are sampled (x[m] := x(mTs), where Ts
is the sampling period), correlated, and averaged, to obtain the
short-term estimates called “snapshots”

R̂k =
1
M

(k+1)M

∑
m=kM+1

x[m]x[m]H .

Each estimate spans about 10–30 s of data and is an estimate of
R(t) at the corresponding time instance, referred in future by the
index k.

A model for Rk is obtained as follows [4]. Astronomers try
to estimate the intensity (brightness) I f (s) of the sky as a function
of the unit-norm location vector s and frequency f . They do this
by measuring the correlation (“visibility”) Vf between identical
sensors i and j with locations ri[k] and r j[k], corresponding to a
baseline ri[k]− r j[k].

Let (�,m) denote normalized coordinates of the sky source
(−1 ≤ �,m ≤ 1), and (u,v,w) the coordinates of the baseline vec-
tor between two telescopes, measured in wavelengths. Assuming a
planar array, w can be removed from the equations via geometrical
delay compensation. Under certain approximations, the “measure-
ment equation” can be written as [8]

V (u,v) =
� �

I(�,m)e− j2π(u�+vm) d�dm . (1)

It has the form of a Fourier transformation. Assume that the sky
consists of a large number (d) point sources, i.e.,

I(�,m) =
d

∑
l=1

I(�l ,ml)δ(�− �l,m−ml)

where I(�l ,ml) is the intensity of the source at location (�l ,ml) and
δ(·) is the dirac function. The relation (1) then becomes

V (u,v) =
d

∑
l=1

I(�l ,ml) e− j2π(u�l+vml) (2)

which can also be written in more detailed notation as

Ri j[k] =
d

∑
l=1

e− j2π(ui0[k]�l+vi0[k]ml) · I(�l ,ml) · e j2π(uj0[k]�l+v j0[k]ml) ,
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where Ri j[k] is entry i, j of R(t) at time k, equal to the visibility
V (ui j[k],vi j[k]), and (ui0[k],vi0[k]) is the location of the i-th tele-
scope at time k with reference to a stationary point. This equation
can subsequently be written in matrix form as [4]

Rk = AkBA
H

k

where Ak = [ak(�1,m1), . . . ,ak(�d ,md)] , ak(�,m) is the array re-
sponse vector,

ak(�,m) =

⎡
⎢⎢⎣

e− j2π(u10[k]�+v10[k]m)

...
e− j2π(up0[k]�+vp0[k]m)

⎤
⎥⎥⎦ (3)

and

B =

⎡
⎢⎣

I(�1,m1) 0
. . .

0 I(�d ,md)

⎤
⎥⎦

As usual, the array response is frequency dependent. The response
is slowly time-varying due to the earth rotation.

3. ASTRONOMICAL IMAGING

3.1. Classical inverse Fourier imaging

The relation between sky brightness I(�,m) and visibilities V (u,v)
(where u, v are taken at frequency f ) is given by the measurement
equation (1). We have measured V on a discrete set of baselines
{(ui,vi)}. The “dirty image” (a lumpy image obtained via direct
Fourier inversion possibly modified with some weights) is defined
by

ID(�,m) := ∑
i

V (ui,vi) e j2π(ui�+vim) (4)

Inserting the model (2), it is seen to be equal to the 2D convolution
of the true image I with a point spread function known as the “dirty
beam”:

ID(�,m) = I ∗B0 = ∑
l

Il B0(�− �l ,m−ml)

B0(�,m) := ∑
i

e j2π(ui�+vim)

Thus, every point source excites the dirty beam centered at its lo-
cation (�l ,ml). From the dirty image ID and the known dirty beam
B0, the desired image I is obtained via a deconvolution process,
e.g., the CLEAN algorithm [9]. In this algorithm, the location of
the maximum of the image is interpreted as a source location, and
the corresponding value as its power. The algorithm proceeds by
subtracting a small multiple of the dirty beam, centered at this lo-
cation and scaled by the estimated power. It is therefore important
that these locations and estimates are accurate.

We can rewrite (4) as

ID(�,m) = ∑
i, j,k

V (ui j[k],vi j[k])e
j2π(ui0[k]�+vi0[k]m) ·

·e− j2π(uj0[k]�+v j0[k]m)

= ∑
k

a
H

k (�,m)Rkak(�,m) . (5)

Therefore, the pixels of the dirty image can be interpreted as being
the output powers of the classical beamformer.

An example of a dirty image is shown in figure 1(a). The
measurement data is a 1-minute “snapshot” (K = 1) collected from

a 60-element test station for the LOFAR telescope.1 Since this
is a two-dimensional array, it does not depend on earth rotation
to enable imaging. Due to the limited integration time, the sky
sources are not yet observed and only interference shows up, which
is visible at the horizon. All other features are due to the sidelobes
of the dirty beam. Figure 2(a) shows a similar observation but at a
slightly different frequency where interference is more dominant:
the sidelobes of a single interferer dominate the complete image.

It is well known in array processing that the estimated source
locations of this beamformer are biased. When the sources are well
separated the bias is negligible compared to the standard deviation,
otherwise it might be significant. This gives an explanation for the
poor performance of the CLEAN in imaging extended structures
(see e.g., [8]).

3.2. Capon Beamformer
From now on, we assume for simplicity of notation that only a
single snapshot is available, therefore we will omit the summation
over k. In more general terms, we can write (5) as the output power
of a beamformer:

Î(�,m) = w(�,m)H
R w(�,m)

where
w(�,m) = a(�,m) .

The weights of the classical beamformer (5) are independent of the
data. It is known that image quality can be improved by using a
data dependent beamformer. Capon beamforming gives a signifi-
cant suppression of the sidelobes compared to classical beamform-
ing. The Capon beamformer minimizes the output power under the
constraint that the gain in the desired direction remains unity:

wcapon(�,m) = argmin
w

w(�,m)H
Rw(�,m)

such that wcapon(�,m)H
a(�,m) = 1 .

The solution to this equation is known to be

wcapon(�,m) =
R−1a(�,m)

a(�,m)HR−1a(�,m)
whereas the estimated source power is

Îcapon(�,m) = wcapon(�,m)H
Rwcapon =

1
a(�,m)HR−1a(�,m)

.

Figure 1(b) shows the corresponding dirty image in the LOFAR
example. It is possible to recover Cassiopeia A, which is the
strongest extrasolar radio source in the sky. Figure 2(b) shows
the same at a different frequency where Cas-A is not expected to
be visible due to ionospheric occlusion. The interference is now
seen to be much more localized. Also note that it appears as if
there is a ring of interference at the horizon, whereas figure 2(a)
only hinted at a single interferer.

3.3. Robust Capon Beamformer (RCB)
Power estimates (images) from an Capon beamformer have much
sharper peaks compared to the classical beamformer. A draw-
back of this property is that calibration errors can cause the Capon
beamformer to underestimate the power. Especially the higher
peaks can be strongly diminished by this effect, resulting in a lower
dynamic range. In the literature, methods have been proposed to

1LOFAR (Low Frequency Array) [2, 3] is a next generation radio tele-
scope which is currently under design. The goal of LOFAR is to enable
radio astronomical observations in the 20–240 MHz band with an unprece-
dented high resolution and sensitivity, using ∼ 13,000 simple antennas
spread over ∼ 50 stations.
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Figure 1. Skymap obtained by (a) Classical beamformer; (b) Capon beamformer; (c) Robust Capon beamformer (ε = 0.1). Observation
frequency is 18.77MHz, bandwidth is 9.77kHz.
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Figure 2. Similar to figure 1 but at a different observation frequency (11.87MHz).

improve the performance of the Capon beamformer for arrays with
imperfect calibration [5–7]. As described in [7] the RCB searches
for the maximum response of the Capon beamformer within an el-
lipsoid around the desired spatial signature. The problem is stated
as

σ̂2, â = argmax
σ2,a

σ2 subject to R−σ2aaH ≥ 0 (6)

a = a+Eu, ‖u‖ ≤ 1 (7)

where a is not parametrized, a = a(�,m) is the (modeled) direction
vector for the current look direction, and E describes an ellipsoidal
uncertainty set. Since there is no information on the calibration
errors, the uncertainty set is taken to be a sphere, i.e. E = εI. An
algorithm for computing the solution is given in [7].

It is shown in [7] that, at the optimum a, the corresponding
σ̂ is given by σ̂2 = (aHR−1a)−1. Therefore, the solution to (6)
is not unique: a factor can be exchanged between a and σ2. It is
indicated in [7] that an accurate estimate of the power is obtained
by scaling a such that it has the same norm as a. As a result, the
image is formed as

ÎRCB(�,m) = σ̂2 ‖a‖2

‖a‖2 .

The images corresponding to our LOFAR example are shown in
figure 1(c) and 2(c), where we have taken ε = 0.1. Compared to
panel (b) the power is estimated more accurately while the side-
lobe levels are still low.

The method proposed by Li to solve (6) requires O(p3) flops
for computing the eigenvalue decomposition of R, where p is the
number of antennas. However, solving for multiple different a and
a constant R as is done in imaging requires an initial step of O(p3)

flops, but for each new a only O(p2) flops are needed. Imaging
costs O(p3)+O(Np2) flops, where N is the number of pixels.

3.4. RCB with additional constraints
The RCB algorithm searches for a maximum value of the Capon
beamformer within an uncertainty set. Up to now, only simple
spherical sets specified by E = εI have been used. A problem with
this is that the sets around neighboring points in the image plane
will overlap, such that a (local) maximum is included in the uncer-
tainty sets of all points close to that maximum. Hence, the RCB
algorithm will return the same value for all points in the neighbor-
hood of the maximum. The result is that every peak shows up as a
disc shaped plateau where the value of the image is constant.

To correct this problem, we may pose additional restrictions
on the uncertainty sets so that they do not overlap. This can be
achieved by making the uncertainty set orthogonal to the surface
described by the function a(�,m), since these are directions that
will be scanned by neighboring points. A local linearization of
this surface is given by the plane

a(�+δ�,m+δm) = a(�,m)+d�(�,m)δ�+dm(�,m)δm

d�(�,m) =
∂a(�,m)

∂�

dm(�,m) =
∂a(�,m)

∂m
The uncertainty set orthogonal to this plane is given by a = a +
Eu, (‖u‖ ≤ 1), and

E = εD⊥

where the columns of D⊥ are an orthonormal basis of the space
orthogonal to the column span of D =

[
d� dm

]
.

A detail which we have overlooked so far is that a is a com-
plex vector, while � and m are real. We only want to remove the

IV - 1091

➡ ➡



Figure 3. Skymap obtained by (a) Robust Capon beamformer; (b) Robust Capon beamformer, reduced uncertainty set; (c) Robust Capon
beamformer, projection afterwards; Observation frequency is 18.77MHz, bandwidth is 9.77kHz, ε = 0.1.

Figure 4. Similar to figure 3, but the result of a simulation of a point source model

Figure 5. Similar to figure 3, but the result of a simulation of a point source model with calibration errors

“real” span of d� and dm from the uncertainty set. To do this, the
problem needs to be transformed to the real domain. We will use
the notation ·̃ for “real versions” of complex vectors and matrices.
In particular, the real version of the hermitian matrix R is

R̃ =
[
ReR −ImR
ImR ReR

]

whereas the real version of vectors a, dm, d� are given by

ã =
[
Rea
Ima

]
, d̃� =

[
Red�

Imd�

]
, d̃m =

[
Redm
Imdm

]
.

After transforming D vector-wise into D̃ = [d̃� d̃m], we can apply
the algorithm without further modification in the real domain.

Solving this problem also requires O(p3) flops for computing
the eigenvalue decompostion of EHR−1E, but because E is differ-
ent for each pixel, imaging costs O(Np3). A faster (but not equiva-
lent) method to get solutions orthogonal to the derivative vectors is
applying the projection to the solution instead of to the uncertainty
set, i.e., â = Pâ0 where â0 is the solution of (6) for E = εI. See
figure 3 to compare the algorithms.

4. SIMULATIONS
We have done simulations to compare the results in figure 3 with
images based on a point source model. From local maxima above
-30dB in the map of figure 2(a) we have created a point source
model R1 consisting of 11 sources. A second model R2 also takes
the calibration errors into account. The models are given by

R1 =
11

∑
n=1

σ2
na(�n,mn)a(�n,mn)

H
,

R2 =
11

∑
n=1

σ2
n(a(�n,mn)+ en)(a(�n,mn)+ en)

H
,

where σ2
n is the power of the n-th point source and (�n,mn) its loca-

tion. Vector en is a random error vector. The vector an +en will be

within the uncertainty set defined by (7) and E = εI, if ‖en‖2 < ε.
In our simulation we have choosen ‖en‖ = 0.5

√
ε. The results in

figure 4 and 5 show that closely separated point sources tend to get
connected especially when ε is much bigger than the actual error.
Overall the Robust Capon Beamformer and its derivatives perform
much better than classical or standard Capon beamforming.
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