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ABSTRACT

A novel noise subspace based method is applied to the

minimum localization system using time-of-arrival (TOA) 

measurements from three base stations (BS). Since the

distance measurement between the mobile station (MS) 

and the BS bears analogy to the multidimensional

similarity (MDS) between their coordinates, we express

the MS coordinate as the linear combination of the BSs’ 

coordinates, where the weight vector lies in the noise

subspace of the MDS matrix. It is proved that this weight

vector is the area coordinate of the MS when the triangle

formed by the three BSs serves as the reference frame.

Because the dimension knowledge of the localization

problem is utilized to estimate the noise subspace and to 

mitigate the errors in TOA measurements, the proposed 

method is superior to the ordinary linear localization

method in most of the enhanced quadrants of the area 

coordinates system.

1. INTRODUCTION 

Recently, positioning of the mobile station (MS) in 

cellular systems attracted large interest and the number of

applications based on the location information grew 

rapidly. Large-scale deployment of such applications

usually requires methods for positioning that are accurate 

and simple enough to be used in mobile phones. 

Many linear methods have been proposed to estimate

the MS position in closed-form. The first and simplest of 

the existing methods is the Cell ID (CID) method where 

the position estimate is the coordinate of the serving BS.

The second of the existing methods is described in [1], the

MS position is calculated as the average (centroid) of the 

positions of all N BSs whose beacons the MS can decode.

It is called UnWeighted Centroid (UWC) method. The

CID method can be regarded as a special case of UWC

with N=1. In [2], three approximated linear methods were 

proposed to estimate the position of the MS. The first, 

Path-Gain Weighted Centroid (PGWC) method, is based

on signal strength, the second, Time Weighted Centroid

(TWC) method, is based on time, and the third,

PGWC+TA, is a hybrid between time and signal-strength

methods. Finally, the third benchmark method uses 

circular multilateration of propagation delays. This is

sometimes known as Time-of-Arrival (TOA) [3]. In our

implementation of TOA localization, the ordinary method

calculates the MS positions from the MS-BSi propagation

delays using a linear and closed-form solution [4].

In this paper, we propose a simple but quite accurate

localization method and compare it with the ordinary

method by means of simulation. Our results show that in

the noisy measurement environment, the proposed 

algorithm is superior to ordinary linear localization

methods in most of the enhanced quadrants of area

coordinates system. Unlike the enhanced quadrant-aware 

localization method in [5] and [6], the linear weight vector

in the proposed method is derived from multidimensional

similarity analysis.

Our proposed methods are very simple and do not

require complicated calculations as opposed to some

iterative methods [7]-[9]. The performance measures are 

coordinate bias and cumulative distribution function of

the root mean square location error, and the evaluation is

done for seven quadrants in the area coordinate system.

Because the dimension knowledge of the localization

problem is utilized to estimate the noise subspace and to 

mitigate the errors in range measurements, the proposed 

method is superior to the ordinary linear localization

method in most of the enhanced quadrants.

2. LINEAR TOA LOCALIZATION

Consider the problem of MS location using range 

measurements from three BSs. Assume that the BSs locate 

at ( , )i ix y , i=1,2,3, and the MS locates at ( ,0 0 )x y  in the

system of rectangular coordinates.

The MS position can be expressed as
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It is the linear combination of BSs’ position, where the

weight vector ( ,1 2 3, )s s s is not unique. Introducing the

following constraint

1 2 3 1s s s                               (2) 

Equation (1) becomes
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From Cramer’s determinant formula, we have 
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It can be proved that the absolute value of 

1 2 3, ands s s is the normalized area (with respect to the

area of triangle formed by BS1, BS2 and BS3) of triangle

formed by (MS, BS2, BS3), (MS, BS1, BS3) and (MS,

BS1, BS2), respectively. Therefore, we call ( ,1 2 3, )s s s

1 2 3, )area coordinates of the MS. The signs of ( ,s s s  are 

determined by the enhanced quadrant in which the MS

lies [5]. As shown in Fig.1, we have seven quadrants in

area coordinate system, whereas four in rectangular

coordinate system.

From (3), we have the following orthogonal property,
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          (4) 

which means that the vector [ ,1 2 3, ]s s s lies in the

orthogonal subspace spanned by vectors

1 0 2 0 3 0
x x x x x x  and 

1 0 2
y y y

0 3 0
y y y .

If the vector [ ,1 2 3, ]s s s is estimated from TOA 

measurements, the MS position can be calculated from (4). 

In [5], the absolute value of area coordinate of MS is

estimated by using Heron formula, but the sign is

determined by the enhanced quadrant information. When

this information is not known, it may be determined from

an original estimation of MS position. However, when the

MS locates close to the axes of the reference triangle, the 

ambiguity of the enhanced quadrant will degrade the

location performance.

In the following two sections, we introduce the

multidimensional similarity (MDS) matrix and establish

the relationship between the vector [ ,1 2 3, ]s s s and the null

space of the MDS matrix. Based on this relationship, we 

can calculate the vector [ ,1 2 3, ]s s s from the null subspace 

of the MDS matrix without additional quadrant 

information.

3. MULTIDIMENSIONAL SIMILARITY ANALYSIS 

Assume that the distance between the i-th BS and the MS

is , between the i-th BS and the j-th BS is , i, j=1,2,3.

Note that

ir ijd

0iid  and 
ij jid d . Define a symmetric matrix

as
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Denote the element of matrix D  by , i, j=1,2,3.

From cosine formula, we have 
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where ij is the angle between the vectors 

0 0i i
x x y y  and 

0j j 0
x x y y . Therefore, we 

have
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It can be seen that the matrix is semi-positive with the

rank equaling to 2 if vectors

D

1 0 2 0 3 0
x x x x x x  and 

1 0 2 0 3 0y y y y y y is not correlated, and , the 

element of matrix D , is the correlation between the

vectors

ijD

0 0i i
x x y y  and 

0 0j j
x x y y , i, j=1,2,3.

Because measures the similarity between two vectors,

matrix is also called multidimensional similarity

matrix [10].

ijD

D

4. SUBSPACE BASED LOCALIZATION

Let the eigenvalue decomposition of  be D
T

D U U

where 1 2 3( , , )diag ,
1 2 3

U u u u  and
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1 2 3

D

, denotes transposition. Because the rank 

of matrix  equals to 2, we have

T
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3 3

T
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From (6), we have 
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Comparing (4) with (7) yields

1 2 3s s s T

3
u

where

3

1

( )sum u

is sum of the elements of vector u . From (7), a novel

subspace based position estimation can be given by 
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5. SIMULATION RESULTS

In this section, we compare the proposed location method

with the ordinary method, which gives the position 

estimation as [4]
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As shown in Fig.1, three base stations locate at (0, 0),

(2500, 4330) and (5000, 0), and the range measurement

error is Gaussian distributed with zero mean and standard

deviation of 30, all the units are meter. To compare the 

performance of the above two methods, seven mobile

stations are fixed in different quadrant of area coordinate

system.

Table 1 gives the comparison results of the root mean

square location error. They are obtained from 300 runs at

each MS position. It can be seen that the improvement of

the proposed method is significant in quadrant 2, 4, 5 and

7. Because the root mean square location error is not

enough to reflect the distribution of location error, we also

plot in Figs.2-5 the estimation bias of x and y coordinates

obtained in each run. 
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Fig.1 Position of mobile stations and base stations. There is one 

mobile station in each quadrant of area coordinate system.

Table 1: Comparison of root mean square location error in 

different quadrant of area coordinate system. (m) 

Quadrant
Proposed

method

Ordinary

method

1 66.03 66.07

2 22.30 41.18

3 24.69 22.25

4 26.87 42.29

5 38.35 49.15

6 23.49 23.44

7 40.78 50.36

Comparison of location error in different quadrant of 

area coordinate system is illustrated in Figs.2-5. The left

two columns of these figures are the location bias of x and

y coordinates obtained from the proposed method and the

ordinary method, respectively, and the right column is the

cumulative distribution function (CDF) of the root mean

square location error (solid line: the proposed method,

dotted line: the ordinary method). Though the location

error distributes differently in each quadrant, it can be 

seen that the improvement of the proposed method is

significant in most of quadrants, except quadrant 3. 

6. CONCLUSION

This paper establishes the relationship between the weight

vectors of the enhanced quadrant-aware method and the

proposed dimension-aware method, which estimate the

rectangular coordinates of the mobile station by linear

combination of that of the base stations. Unlike the former

method, the linear weight vector is estimated from

multidimensional similarity analysis and the additional

enhanced quadrant information is not required in the

proposed method. Simulation results shown that the

proposed method performs better than the ordinary

method in most of quadrants in area coordinate system.
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Fig.2 Comparison of location error in quadrants 1 and 2. 
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Fig.3 Comparison of location error in quadrants 3 and 4. 
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Fig.4 Comparison of location error in quadrants 5 and 6. 
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Fig.5 Comparison of location error in quadrant 7. 
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