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ABSTRACT

This paper concerns target depth estimation using

wideband active sonar multipath returns.  Detailed full-

field modeling of target returns is complicated by spectral

amplitude and phase distortions induced by unknown 

target scattering, uncertainty in the bulk group delay, and 

unmodeled propagation effects.  However, since the

relative delays of the multipath return are relatively robust 

to modeling errors, the approach considered in this work

consists of estimating a subset of the relative delays

present in the data and using them with a depth-dependent

likelihood function derived from ray-traces based on the 

ocean environment.  This maximum-likelihood depth 

estimate (MLDE) algorithm is compared with an 

alternative full-field matched-field depth estimate

(MFDE) approach in terms of results obtained with a real

mid-frequency active sonar.

1. BACKGROUND 

Matched-field processing (MFP) for active sonar is

complicated by the fact that the complex target scattering

function is unknown and introduces unknown phase and 

amplitude differences between scattered modes [1,2,3]. In

an earlier work on depth estimation, a narrow-band

matched-field processing algorithm called MFDE was 

developed which models the space-time target return at an 

array as a random complex sum of undistorted multipath

signals [4,5].

In this paper, we consider depth estimation using

wide-band signals, which have the potential to resolve

some of the multipath arrivals scattered by the target.  In

particular, beamformed, match-filtered time series for

successive pings contain multipath returns which are a

function of target depth and range. A limitation of the ray

acoustic models for wideband returns, however, is their

inability to handle frequency dependent spectral distortion

that is not explained by the usual linear superposition of 

scaled and delayed versions of the transmitted signal.

These spectral distortions are partially due to the inability

of the acoustic ray propagation code to model the

unknown, frequency-dependent nature of the bistatic

target scattering function. Further, bulk group delay jitter 

also distorts the phase spectrum of the observed multipath

return.

In the following sections, we discuss two signal

models for wideband multipath target returns and

associated algorithms for the depth estimation problems

they represent. The first is the wideband MFDE approach 

which extends the previous narrow-band MFDE. The

second is a delay-based MLDE approach which uses

measured delay differences from time-domain target 

returns.

2. MULTIPATH SIGNAL MODELS 

For a given transmitter-target-receiver geometry, there 

generally are a multitude of possible paths between the

transmitter and target and between the target and the

receiver.  If the bathymetry and sound velocity profiles 

are specified, the group delays of the various paths can be 

calculated via a ray-trace algorithm [6].  The delays 

predicted by the ray-tracer, as well as the number of 

delays, is generally a function of the hypothesized target

depth. The depth estimation algorithms described in this

paper attempt to exploit this dependence to arrive at a 

depth estimate, and so the ray-trace output (as a function 

of depth) is a key parameter set in the signal models.

2.1 MFDE signal model

The narrow-band MFDE signal model has been described

more fully elsewhere, so only a brief indication of the

wide-band model, which is a simple extension, will be

given here [3].  In particular, the extension considered

here is to divide the wideband return into a set of sub-

bands. The sub-band widths should be large enough so 

that longer time delay spreads (corresponding to fast

frequency fading due to multipath) can be captured in

each sub-band but small enough to insure that small delay 

spreads (corresponding to target-induced scattering) do 

not affect the sub-band model up to a complex amplitude

scaling.  A linear signal model for the  observation and thn
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thm sub-band assumes a sum of delayed returns with

random complex amplitudes and is modeled in the 

frequency domain as:

(1), ,mn mn n n mn mnr z vx H s

where  is the frequency-domain replica

matrix for a target at range , depth , and velocity .

The number of columns in  is equal to the

number of paths that make up the sonar return, and each

column of H corresponds to the in-subband

complex spectrum of the signal returning on a particular

path.  The complex vector  describes the scattering on

each multipath, and  is complex additive noise.  The

parameters  and v  are assumed to be known or 

previously estimated, and the depth parameter  is 

assumed to have the same value for all observations .

The vectors s  and (over all values of m  and n )

are assumed to be jointly Gaussian, zero mean, and 

independent, with covariance matrices are 
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respectively.

2.2. MLDE signal model

Dividing the frequency band of the signal into K  bands, 

the in-phase-and-quadrature (I&Q) impulse response of 

the  sub-band matched filter will be denoted by the

function .  Let the function  be the time series 

of the transmitted signal.  Denote the  multipath delay

due to a target at range  and depth  as 

thk

( )km t ( )q t

i

z

th

nr , (n i z) .  Let the

function ( )i t  denote the impulse response of the target

for the i  multipath.  Then the output of the  sub-band 

matched filter with the n  observation as the input can be 

written as

th thk
th

 (2) ,( , ) ( ( ) ( ) ( ( ))) ( )kn kn k i n i kn

i

y t z a m t t q t z t

where the symbol “* ” indicates convolution. The

complex scalars are complex amplitudes of each 

multipath and

kna

( )tkn  is zero-mean Gaussian noise. The

amplitudes  are treated as non-random, unknown 

parameters. Unlike the MFDE algorithm, the variance for 

the noise does not play an explicit role in the application

of the MLDE algorithm.

kna

3. MFDE AND MLDE METHODS 

One approach to handling distorted returns is to

divide the wide-band spectrum of the signal into a number

of narrow sub-bands, perform narrow-band MFDE on 

each sub-band, and incoherently accumulate the resulting 

likelihood over sub-bands.  However, for surface targets 

this model does not seem to address the variability seen in

real  returns.

Another approach to the problem is to estimate delay

differences between arrivals in a multipath return and use

these time differences to estimate the target depth. The

MLDE algorithm described in this paper employs this

strategy, and is applied to real data.  The results are

compared to the corresponding results with the MFDE

algorithm.

3.1. MFDE algorithm

Since the observation is zero-mean Gaussian by the 

assumptions of the signal model, the covariance matrix  is 

given by

mnx

2( ) H

mn mn mnz z zR H H I

mnx

z

 (3) 

Then the log-likelihood function is given by

 (4) 1( | ) ln( det( ( ))) ( )W H

k mn mn mn mnL z z zx R x R

Summing the likelihood over all observation and sub-

band indices, the MFDE is

 (5) MFDE

,

ˆ arg max( ( | ))mn mn

z m n

z L x

3.2. MLDE algorithm

Since target depth is encoded in relative multipath delays,

given sufficient bandwidth to resolve at least some of the

multipath delays, the depth estimation problem is split

into two stages: 1) multipath delay difference estimation

in a scattering environment, and 2) maximum likelihood

depth estimation using multipath delays.

Ideally, the delay difference estimator should be

insensitive to bulk group delay, robust to uncertainty in 

multipath phase and amplitude scaling, and robust to

target and bottom scattering distortions.  The delay

difference estimation approach employed here is to

measure the time difference between the two strongest

peaks in the sub-band matched filter output. Denote this

measurement for the  sub-band and  observation

 by

thm thn

( , )kny t z mn .  Since the functions ( )i t are not 

generally impulse functions, the data model in Eq. (2) will

not exhibit differential delays between its peaks that

match exactly those predicted by the distortionless model
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(i.e., when ( ) ( )i t t  for all , where i ( )t  is the Dirac 

delta function).

yp )

z

,) n j| |ijn

(ijn hypd z( |hyp mnl z )g

The set of relative multipath delays mn  estimated

from this process can be then used as the input to a 

maximum likelihood depth estimator. Specifically, at a

hypothesized depth , a depth-dependent likelihood

function may be calculated in the following manner:

given a set of multipath delays

hyp

, h(n i z  (the index i

runs from 1 to the number of delays) calculate all possible

delay differences hyp yp( ) )n z, hyp(i z h(d z , and 

form the likelihood function

 (6) 
,

) ( )n mn
i j
i j

C

where the function g  is a histogram-smoothing kernel

and  is a normalization constant chosen so thatC

( |n hyp )l z x dx 1.  Then the MLDE becomes

MLDEˆ arg max( ( | ))n mn

z n

z l z (7)

The smoothing kernel g may be chosen to represent the 

degree of uncertainty in the measured differential delays,

which is induced by the unknown functions ( )i t  in

Eq. (2). The kernel used in this paper had the same form

as the density function for a Gaussian random variable:

2 1/ 2 2 2( ) (2 ) exp( /(2 ))g x x  (8) 
(a)

(b)

where was set to 5 ms.  The likelihood in Eq. (2) is

written in terms of a single relative delay estimate per

ping, but it could be generalized to multiple relative delay

estimates per ping, potentially yielding better estimation

performance.

4. REAL DATA RESULTS 

Both the MFDE and MLDE algorithms have been applied

to real data, and results are presented here for both a 

surface target and an echo repeater.  The surface target 

was a target of opportunity. The transmitted signal for the 

surface target was an HFM with a bandwidth of 400 Hz

(which was split into five sub-bands for processing), and

the signal employed for the echo repeater was an 800 Hz 

HFM (which was split into eight bands). The signal to

noise ratio for the data from both targets was 

approximately 20 to 25 dB.

Figure 1.  Real data results from an echo repeater at a

depth of 122 m:  (a) MLDE depth is 120 m, (b) MFDE

depth is 108 m.

Fig. 1(a) shows the accumulated log-likelihood 

surface from the MLDE for the echo repeater data (true

depth was 122 m), where the vertical axis is hypothesized

depth (in meters) and the horizontal axis is ping index.

The accumulated log-likelihood is indicated by the

intensity, with darker shades corresponding to greater

likelihood. The estimate after 28 pings of data was 120 

m.  Fig. 1(b) shows the accumulated log-likelihood

surface from the MFDE.  The estimate after 11 pings was

108 m.

Fig. 2(a) shows the accumulated log-likelihood 

surface for the MLDE with the surface target (true depth 

was 5 to 10 meters).  The estimate after 52 pings of data

was 4 m.  Fig 2(b) shows the accumulated log-likelihood

surface from the MFDE.  The estimate after 11 pings was

107 m, which was very near to the ocean bottom.
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5. REMARKS 

The MFDE and MLDE both seem to perform well with

the echo repeater target, while only the MLDE gives a

good result with the surface target.  This may be due to 

the fact that the echo repeater may not contribute large

spectral distortions to the received signal spectrum, while 

the surface target (a ship’s hull) probably does induce

larger spectral distortions.

One key assumption that is made in this work is that

the spectral distortion is not so severe that the matched

filters used in the MLDE algorithm is incapable of

producing strong peaks to enable the algorithm to register

the arrival times along the two strongest paths.  In the case 

that the distortion is great enough to preclude this

approach, a more robust method of estimating delay

differences is required.  This is a direction for future 

study.

Another area for future study are methods for

determining the number of sub-bands to use with these

algorithms.
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