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ABSTRACT

Using time-difference-of-arrival (TDOA) measurements to per-
form speaker localization has received much interest recently. Mo-
tivated by the significant progress in TDOA single speaker local-
ization, this paper presents a TDOA multi-speaker location track-
ing algorithm based on Bayesian particle filtering. The develop-
ment is based on the random finite set framework, which provides
an effective treatment to the problem of unknown time-varying
number of active speakers. The proposed method can be viewed as
a generalization of the existing single-speaker particle filter. Using
a simulated reverberant room, we demonstrate the tracking capa-
bility of the proposed particle filter.

1. INTRODUCTION

Using speech activity to locate speakers is an important problem
in microphone array processing, driven by applications such as
automatic camera steering in video-conferencing. Challenges in
speaker localization include room reverberation effects and multi-
ple speaker voice activities, both of which are considered difficult
signal processing problems.

Single-speaker localization techniques have recently seen sig-
nificant progress [1–3]. In particular, the time-difference-of-arrival
(TDOA) based localization approach has been frequently consid-
ered. In a TDOA system such as that depicted in Fig. 1, micro-
phones are grouped into pairs and the TDOA (or the inter-sensor
signal propagation delay) is measured for each pair. Under the as-
sumption of single, direct path signal propagation, the TDOA can
be measured reliably using standard methods such as the gener-
alized cross correlation (GCC) method [4]. The TDOAs for all
microphone pairs are then used to estimate the speaker location.
Again, standard, simple methods are available for TDOA loca-
tion estimation; see [1] and the references therein. The problem
with this simple approach is that in the presence of reverberation,
the GCC method can give anomalous TDOA estimates which are
not formed by the direct paths. Recent research reveals two ap-
proaches for combating this problem:

I. Replace the GCC estimator by blind channel identifica-
tion based TDOA estimators, which accounts for the re-
verberation effects by estimating the whole room impulse
responses; see [1] and the references therein.

II. Apply Bayesian filtering [2,3], which, in the target tracking
context, has been shown to be effective in handling false
measurements.

This work was supported in part by a research grant awarded by the
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In general, the Class I approach exhibits simpler structures than
the Class II. However, simulation evidences have indicated that the
Class II approach can provide better location estimation accuracy
compared to the Class I. This is because the Bayesian treatment ex-
ploits the correlation of the speaker motion from one time window
to another.

The objective of this paper is to extend the Bayesian approach
to a multi-speaker scenario in which the voice activity interval for
each speaker is unknown and random. This scenario poses a sig-
nificant challenge in signal processing (and this is also true for
the Class I approach). In this paper, we employ the theory of
random finite sets (RFSs) to formulate the multiple-speaker local-
ization problem. RFS is a rigorous mathematical discipline for
dealing with random spatial patterns [5,6] that has long been used
by statisticians in many diverse applications including agriculture,
geology, epidemiology [6], and more recently multi-target track-
ing [7–9]. Discussions regarding the differences between the RFS
and other multi-target tracking techniques can be found in [10,11].
Our previous work in multi-speaker localization [11] considers a
suboptimal Bayesian RFS filter using the first-order moment ap-
proximation [8]. In this work we focus on the optimal Bayesian
RFS filter. Analogous to the single-speaker work [2, 3], a particle
implementation is developed for the RFS filter. In Section 4, we
will use a simulated room environment to demonstrate the tracking
capability of the proposed method.

2. RFS FORMULATION FOR MULTI-SPEAKER
LOCALIZATION

Before describing the RFS formulation for multi-speaker localiza-
tion, it is instructive to provide a brief review on the case of sin-
gle speaker and no reverberation. We define � � � � � to be the
speaker � 	 
 � � position vector at the  th time frame. Then, define� � � � � � � 
 � � � � � where � � contain some kinematic variables for
the speaker motion (e.g., velocity). A state space equation is used
to model the time dependence of � � :

� � � � � � � � � � � � (1)

where � and � are some pre-specified matrices, and � � is a
time-uncorrelated random vector. For example, we can choose� � � � � , � � � � � � and � � � � � � 
 � �� � � for some vari-
ance � �� , which will lead to the random walk model. Some more
sophisticated motion models are also available; e.g., the Langevin
model [2, 3]. Next, we consider the TDOA measurements. The
TDOA obtained at the  th time frame from the  th microphone
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pair is given by� � � �� � � � � � � 	 
 � � � �� (2)� � � � � 	 � � � � � � � � � � � � � � � � � � � � � � 	 (3)

Here, � � � �� is measurement error which we assume � � � �� � � � � � � �� 	
for some error variance � �� , � � � � � � � � � � � are the position vectors
of the � th microphone pair, and  is the speed of sound.

In the RFS case, the state vector � � is extended to a finite set� � � � � � � � � � � � � �  ! � � � (4)

which contains the state vectors of speakers active at time " . Here,# � � $ � � $ (where $ � $ stands for the cardinality) is the number of
active speakers at time " . We assume

# � % # & ' (
where

# & ' (
is

the maximum allowable number of speakers. The RFS state space
equation is given by

� � � ) � � * � 	 + ,- . /0 1 � � 2 2 2 � 3 4 ! 5 6 3
7 � � � 0 � � 8 � � 9 0 � � 	 : ;< (5)

where ) � � * � 	 contains state vectors of speakers ‘born’ at time" ,
7 � � � � 8 � � 9 0 � � 	 is contributed by the speaker associated with� � 8 � , and the vectors 9 0 � � and * � are random variables account-

able for the random behaviors of
� � . For

7 � , we have the follow-
ing hypotheses:7 � � � 0 � � 8 � � 9 0 � � 	 � = > � ? @ A ' B C� D � 0 � � 8 � 
 E 9 0 � � � � F? @ A ' B C (6)

where ? @ A ' B C
and F? @ A ' B C

are respectively the death and no-death
hypotheses. The hypothesis ? @ A ' B C

has a probability of G @ A ' B C
.

For the birth process, we assume that at most
�

speaker is born at
a time. If $ � � 8 � $ � # & ' (

then we have ) � � > . Otherwise, the
following hypotheses apply:

) � � * � 	 � = > � F? H 0 I B C� * � � � ? H 0 I B C (7)

where ? H 0 I B C
and F? H 0 I B C

are respectively the birth and no-birth
hypotheses, and * � is an initial state vector under the birth hypoth-
esis. We denote the probability of ? H 0 I B C

by G H 0 I B C
. Moreover, * �

is assumed to follow an initial state distribution in which the � J � K 	
position is uniformly distributed within the room enclosure and the
other kinematic variables (such as velocity) are zero.

Our TDOA measurement scheme follows that of [2, 3], in
which multiple TDOAs are extracted from the GCC function by
multiple peak picking. Thus, the measured TDOA in (2) is ex-
tended to a set-valued observationL � � �� � = � � � �� � � � � � � � � � � �M N O P! � � Q � (8)

where R � � �� � $ L � � �� $ is the number of estimated TDOAs. It is

important to note that only some of the elements in
L � � �� follow

the true TDOA measurement model in (2). Moreover, we do not
know which elements in

L � � �� are true TDOAs. Thus, the TDOA
measurement model takes the form

L � � �� � ,- . /0 1 � � 2 2 2 � 3 4 ! 3 S � � �� � � 0 � � � � � � �0 � � 	 : ;< + T � � �� (9)

where T � � �� is the finite set of false TDOAs, and S � � �� is given by

S
� � �� � � 0 � � � � � � �0 � � 	 � U > � ? & 0 V VW � � � X � 0 � � 	 
 � � � �0 � � Y � F? & 0 V V (10)

with � � � �0 � � � � � � � � �� 	 . Here, � � � X � � 	 is given in (3), X is such
that X � � � � � , and F? & 0 V V and ? & 0 V V are respectively the de-
tection and miss hypotheses. The hypothesis ? & 0 V V happens with
a probability of G & 0 V V . For the false TDOAs, we follow the stan-
dard assumption in [2, 3] that each  � � �� Z T � � �� independently fol-
lows a uniform distribution over the admissible TDOA interval[ � � & ' ( � � & ' ( \ , where � & ' ( � � � � � � � � � � � � ]  . (For simplic-
ity the inter-sensor distance � � � � � � � � � � � for every microphone
pairs is assumed to be the same.) In addition, the number of false
TDOAs $ T � � �� $ is assumed to follow a Poisson distribution with an
average rate of ^ _ .

The above RFS formulation is applicable to any
# & ' (

(i.e.,
the maximum number of active speakers), but in this TDOA ap-
plication we usually fix

# & ' ( � ` . The reasons for this are
as follows: i) The GCC method, which was designed for single
source problems, only has medium time resolution to distinguish
TDOAs of two speakers. When there are many speakers or when
the TDOAs of two speakers are close, GCC may only be able to
obtain a few true TDOAs that are associated with the dominant
sources. ii) In hands-free communication and teleconferencing ap-
plications, the mostly commonly encountered events are either no
voice activity, one speaker, or one speaker interrupting another.

With the above RFS problem formulation, we can develop a
Bayesian framework for estimating

� � ; i.e., estimating both the
multi-speaker locations and the number of active speakers. This is
considered in the next section.

3. RFS BAYESIAN FILTER

Using the RFS theory, we can construct probability density func-
tions (p.d.f.s) for the RFS multi-speaker problem formulated
above. This result is useful in developing a probabilistic frame-
work for multi-speaker localization. More importantly, the RFS
theory enables us to transfer many ideas in vector-valued Bayesian
estimation directly to the RFS scenario. To illustrate this, we de-
note the p.d.f. of

� � conditioned on
� � 8 � bya � � � $ � � 8 � 	 � (11)

and the p.d.f. of
L � � �� given

� � byb � � L � � �� $ � � 	 � (12)

The principles for deriving (11) and (12) can be found in the liter-
ature, such as [7]. Now, let

L � � c d �� c � define a sequence consisting of

the finite sets
L � � �0 for all e � � � � � � � " and � � � � � � � � f (wheref is the total of number of microphone pairs). The posterior p.d.f.s

for
� � has a recursive relation reminiscent of the classic prediction

and update formulae [12], given as follows:g � � � $ L � � c d �� c � 8 � 	 � h a � � � $ � � 8 � 	 g � � � 8 � $ L � � c d �� c � 8 � 	 i � j � � 8 � 	
(13)

g � � � $ L � � c d �� c � 	 � k d� 1 � b � � L � � �� $ � � 	 g � � � $ L � � c d �� c � 8 � 	l k d� 1 � b � � L � � �� $ � � 	 g � � � $ L � � c d �� c � 8 � 	 i � j � � 	
(14)
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� � � � � � �� � � 	 
 � �  � �  �� � � � � � � � � � �� � (16)

� � � � � � �� � � � � � 	 
 � � � � � � �� � � 	 � ! " # $ % % & � ' ( " # $ % % 	 )* � � �� + � � � �� � � � � � � � � , � - � � �� . / � � 0 � � 	 1 2 �3 	 4 56 (17)

� � � � � � �� � � � 7 8 � 1 � � 8 � � 	 
 � � � � � � �� � � 	 9 :$ ; 7 8 � � ! " # $ % % & � ' ( " # $ % % 	 )* � � �� + � � � �� � � � � � � � � , � - � � �� . / � � 0 � $ 8 � 	 1 2 �3 	 4 56
( � ' ( " # $ % % 	 � )* � � �� + � � � �� � � � � � � � � � , � - � � �� . / � � 0 � 7 8 � 	 1 2 �3 	 , � - � � �� . / � � 0 � � 8 � 	 1 2 �3 	 < (18)

where = is the extended Lebesque measure on the space of finite
subsets of the state space [9].

Given > � ? � � � � 7 @ A �7 @ � 	 , we can estimate
? � using a Bayes opti-

mal criterion such as the expected a posteriori (EAP). This work
employs the EAP approach, the details of which can be found
in [9, 10]. To compute > � ? � � � � 7 @ A �7 @ � 	 , we adopt a particle filter
implementation for (13) and (14). The benefits of this imple-
mentation are reminiscent of those in the single-speaker scenario;
see [2, 3] for the details. The idea of RFS particle filtering was
presented in [9], in which some theoretical aspects were also ex-
plored. Table 1 shows a bootstrap particle filter developed for our
RFS multi-speaker problem. Essentially, the algorithm uses a set
of set-valued particles � ? B $ C� � and weights � D B $ C� � to recursively
approximate the posterior p.d.f.:

> � ? � � � � 7 @ A �7 @ � 	 E F) $ ; 7 D B $ C� G H � ? � ( ? B $ C� 	 (15)

where G H � I 	 is a set-valued version of the standard Dirac delta
function. An advantage of this bootstrap filter is that we do not
need to evaluate the state transition density

J � ? � � ? � � 7 	 . The par-
ticle generation at Step 1 of Table 1 can be easily done by fol-
lowing the state space process in (5) to (7). At the top of this
page we show expressions for � � � � � � �� � ? � 	 that are sufficient for
the speaker tracking application. In (17) to (18), the notation, � - . K- 1 2 �* 	 stands for a Gaussian density function with mean K-
and variance 2 �* .

It is worthwhile mentioning that if we set
L # M N 
 '

," O P M Q R 
 S , and " T $ U Q R 
 '
, the resulting RFS particle filter

reduces to a form very similar to the single-speaker particle filter
in [2, 3].

4. SIMULATION RESULTS

We use a simulated reverberant room to test the tracking perfor-
mance of the proposed RFS particle filter. The room is illustrated
in Fig. 1. The dimensions of the enclosure are 3m V 3m V 2.5m.
We employ four microphone pairs, each of which has an inter-
sensor spacing of / # M N 
 S I W m. Fig. 1 also shows the trajectories
and birth/death times of the speaker sources. The speaker sources
are all female. The acoustic image method [13] was used to sim-
ulate the room impulse responses. The reverberation time of the
room impulse responses is about X Y Z 
 S I ' W s (see the literature

Table 1. RFS bootstrap particle filter for multi-speaker tracking.

Given a particle size [ .
for \ 
 ' 1 ] 1 I I I

Step 1. Sampling: Generate ^? B $ C� _ J � I � ? B $ C� � 7 	 indepen-
dently for ` 
 ' 1 I I I 1 [ . Compute

^D B $ C� 
 A:� ; 7 � � � � � � �� � ^? B $ C� 	 D B $ C� � 7 (16)

Normalization: ^D B $ C� a 
 ^D B $ C� b � c Fd ; 7 ^D B d C� 	 for all ` .

Step 2. Resampling: Apply a resampling algorithm [12] on� ^D B $ C� 1 ^? B $ C� � F$ ; 7 to obtain a resampled set � D B $ C� 1 ? B $ C� � F$ ; 7 .

end

such as [3] for the definition of X Y Z ). The speech-signal-to-noise
ratio is about ] S dB. The time frame length for measuring TDOAs
is

' ] e ms, and the time frames are non-overlapping. Fig. 2 plots the
measured TDOAs against the time frame index. We can see that
the condition of the measured data is not so good: The largest GCC
peak does not always represent one of the true TDOAs. Moreover,
in the presence of two active speakers (from time 20 to 30), the ac-
curacy of the measured TDOAs tend to deteriorate due to mutual
interference between the two speech signals.

The parameter settings for the RFS particle filter are as fol-
lows. The state space model is the Langevin model used in [2, 3],
with the same parameters. The standard deviation of the TDOA
measurement error is 2 3 
 ' ] W = f (which is also the sampling
period). The other parameters are " T $ U Q R 
 S I ] , " O P M Q R 
 S I S '

," # $ % % 
 S I ] W , g h 
 i , and [ 
 W S S . Fig. 3 illustrates the
tracking performance of the multi-speaker RFS particle filter. For
comparison, we also show the performance of the existing single-
speaker particle filter [2, 3] in the same figures. Clearly, the RFS
particle filter is capable of identifying the locations and activity
intervals of the two speakers. The single-speaker particle filter
gives a reasonable single-speaker tracking performance. From
time step 30 to 43, the single-speaker particle filter exhibits a
transient convergence where the location estimate moves from the
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Fig. 1. Geometric settings for the room simulation.
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Fig. 2. Measured TDOAs at (a) sensor pair 1, and (b) sensor pair 3.

‘dead’ source to the new source. The RFS particle filter, however,
does not have such a performance limitation.

5. CONCLUSION

Using the RFS theory and the particle filter implementation con-
cept, we have developed a TDOA multi-speaker location tracking
algorithm that can handle unknown, time-varying number of ac-
tive speakers. We have used simulations to show that the proposed
algorithm can correctly determine not only the speaker locations,
but also the voice activity interval for each speaker.
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