
ALTERNATE SOURCE AND RECEIVER LOCATION ESTIMATION USING TDOA WITH
RECEIVER POSITION UNCERTAINTIES

L. Kovavisaruch, K. C. Ho

Dept. of Electrical and Computer Engineering University of Missouri, Columbia, M0 65211

ABSTRACT

The accuracy of source localization is sensitive to the knowledge
of the receiver positions. In the presence of the receiver position er-
ror, a robust algorithm is necessary to improve performance. This
paper presents an iterative algorithm for estimating alternately the
location of an emitter and the positions of receivers using Time
Difference of Arrival (TDOA) measurements, when the receivers
have random position errors. The proposed solution is based on
weighted least-squares (WLS) minimization, and does not have
convergence problem. The estimated accuracy of emitter and re-
ceiver locations are approaching the CRLB under Gaussian noise
with small receiver position error. The performance of the pro-
posed algorithm is evaluated through simulations.

1. INTRODUCTION

Receiver location uncertainty can severely deteriorate source lo-
calization accuracy. Even relatively small uncertainty in receiver
(sensor) locations could make considerable contributions to local-
ization error. Thus, the problem of improving the estimated source
location under receiver position errors is an important issue and
has been addressed by many authors [1]-[7].

As such, in Direction of arrival (DOA) estimation, various
self-calibration algorithms have been proposed to jointly estimate
the source DOA and the sensor locations. Rockah and Schultheiss
[1]-[2] utilized the CRLB to derive a DOA estimation method in
the presence of sensor position uncertainty, with the knowledge
that one sensor location and its direction to the second sensor is
known exactly. Tseng et al. [3] proposed projection-rotation-
scaling (PROS) method to estimate the steering vector in uncali-
brated arrays which is used to improve the reliable source DOA es-
timates. Weiss and Friedlander [4] proposed an extension method
on the MUSIC algorithm which alternately estimates the DOA and
the senor locations until convergence is achieved. Flanagan and
Bell [5] applied both (PROS) [3] and Weiss and Friedlander [4]
technique to alternately estimate the signal DOA and sensor loca-
tion when large sensor position errors are presence. Viberg and
Swindlehurst [6] proposed the maximum a posteriori noise sub-
space fitting (MAP-NSF) method which estimates all parameters
simultaneously by using a Bayesian method. However, only a few
of these methods were developed to handle a source localization
using TDOA in the presence of receiver position uncertainty.

Ho et al. [7] recently proposed a closed-form solution for
source localization using TDOA with erroneous receiver positions.
The method estimates only the source location and is not able to
provide receiver location estimates that would be useful in calibra-
tion and subsequent estimation task. In this paper, a method that
estimates at alternate the emitter location and receiver positions in

the presence of random receiver position error is proposed. Both
the source and receiver positions estimates are able to reach the
CRLB for Gaussian noise if the receiver position errors are small.

The outline of this paper is as follows. Section 2 is the deriva-
tion of the proposed solution. Section 3 shows the simulation re-
sults. Finally, Section 4 is the conclusion.

2. THE PROPOSED SOLUTION

The proposed method consists of three steps as shown in Figure
1. The first step is to estimate the emitter location assuming the
receiver positions are exact although in fact they have noise. In
the second step, the estimated source location is used to reduce the
noise in the receiver positions through estimation process. In the
last step, the emitter location is estimated again using the improved
receiver positions from the second step. The emitter location esti-
mate will be more precise due to more accurate receiver positions.
Step two and three can be repeated several times to obtain an even
better source location. The three steps are described below sepa-
rately.

2.1. Step 1: Source localization with receiver location errors
In the first step, we ignore the receiver position errors and assume
that the receiver positions are correct. Then we apply the method
from Chan and Ho [8] to estimate the source location. The Chan
and Ho method employs a nuisance variable that allows emitter lo-
cation to be solved efficiently, and utilizes the computed nuisance
variable value to improve the accuracy of the emitter location. For
the purpose of completeness and the derivations in step 2 process,
we shall briefly summarize the Chan and Ho method below.

Consider a scenario where an array of M sensors is used to
determine the unknown emitter source location u = [x, y, z]T .
Let so

i = [xo
i , y

o
i , zo

i ]T be the true receiver positions. The true
distance between the source and the ith sensor is

ro
i = |u − so

i | =
√

(x − xo
i )

2 + (y − yo
i )2 + (z − zo

i )2. (1)
The TDOA of a signal received by the sensor pair i and 1 is ti1,
and the signal propagation speed is defined by c. Then the set of
TDOA measurement equations are:

ro
i1 = cti1 = ro

i − ro
1 . (2)

Let θ
(1)
1,e = [x, y, z, r1]

T be the unknown vector. Expressing
(2) as ro

i1 + ro
1 = ro

i , squaring both sides and substituting (1), it
can be derived that the WLS solution of θ

(1)
1,e is [8]

θ
(1)
1,e = (G

(1)T
1,e W

(1)
1,eG

(1)
1,e)

−1G
(1)T
1,e W

(1)
1,eh

(1)
1,e, (3)

where

h
(1)
1,e =

⎡
⎢⎣

r2
21 − l21

...
r2

M1 − lM1

⎤
⎥⎦ ,G

(1)
1,e = −2

⎡
⎢⎣

(s2 − s1)
T r21

...
...

(sM − s1)
T rM1

⎤
⎥⎦ ,
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and li1 = sT
i si − sT

1 s1, for i = 2, ..., M . The matrix W
(1)
1,e is the

weighting matrix defined as
W

(1)
1,e = B

(1)−T
1,e Q−1

t B
(1)−1
1,e , (4)

where in (3), the true receiver positions so
i are replaced by the

noisy value, si. The matrix B
(1)
1,e is 2 diag{r2, r3, · · · , rM} and

the matrix Qt is a known covariance matrix of c2 times TDOA
noise. The covariance matrix of θ

(1)
1,e is given by [8]

cov(θ
(1)
1,e) = (G

(1)T
1,e W

(1)
1,eG

(1)
1,e)

−1. (5)

Next, the estimated r1 from θ
(1)
1,e is used to improve the accu-

racy of emitter location. Let θ
(1)
2,e = [(x − x1)

2, (y − y1)
2, (z −

z1)
2]T . By using another LS minimization based on (1) with i =1,

we have [8]

θ
(1)
2,e = (G

(1)T
2,e W

(1)
2,eG

(1)
2,e)

−1G
(1)T
2,e W

(1)
2,eh

(1)
2,e, (6)

where

h
(1)
2,e =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
θ
(1)
1,e(1) − x1

)2

(
θ
(1)
1,e(2) − y1

)2

(
θ
(1)
1,e(3) − z1

)2

θ
(1)
1,e(4)2

⎤
⎥⎥⎥⎥⎥⎥⎦ ,G

(1)
2,e =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1
1 1 1

⎤
⎥⎦ ,

and W
(1)
2,e is the weighting matrix defined as

W
(1)
2,e = B

(1)−T
2,e cov(θ

(1)
1,e)B

(1)−1
2,e , (7)

where B
(1)
2,e = 2diag{(x−x1), (y−y1), (z−z1), r1} and cov(θ

(1)
1,e)

is defined in (5). Hence, the position estimate u(1) = [x, y, z]T is

u(1) = P
[ √

θ
(1)
2,e(1)

√
θ
(1)
2,e(2)

√
θ
(1)
2,e(3)

]T

+ s1, (8)

where P = diag{sgn(θ
(1)
1,e(1)−x1), sgn(θ

(1)
1,e(2)−y1), sgn(θ

(1)
1,e

(3)− z1)}, and is used to remove the sign ambiguity of the square
roots in (8). Additional details of this method can be found in [8].

2.2. Step 2: Estimation of receiver locations
The receiver locations are estimated based on the knowledge of the
estimated emitter position from Section 2.1. The solution method
employs nuisance variables that allow receiver locations to be solved
efficiently, and improves the estimated receiver position accuracy
using the estimated values of the nuisance parameters.

First, we assume the source position u(1) is noise free, where
u(1) is from Section 2.1,

u(1) = [x(1), y(1), z(1)]T . (9)
The available receiver positions are noisy and are represented by

si = so
i + ∆si, (10)

where ∆si is the receiver position error and is assumed to be a
zero mean random vector with a certain density function.

Upon rewriting the TDOA measurement equation (2) as ro
i1 +

ro
1 = ro

i , squaring both sides and substituting the square of (1) at
i = 1, the TDOA measurement equation becomes

ro2
i1 + 2ro

i1r1 = soT
i so

i − soT
1 so

1 − 2(so
i − so

1)
T u. (11)

By representing ro
i1 in terms of ri1−c∆ti1, for i = 2, 3, ..., M

and ro
1 in terms of r

(1)
1 − ∆r

(1)
1 and then rearranging (11),it then

becomes
2ri∆cti1+2ri1∆r

(1)
1 = r2

i1+2ri1r
(1)
1 +2u(1)T so

i−2u(1)T so
1−loi1,
(12)

where loi1 = soT
i so

i − soT
1 so

1, (13)

and the second order error terms are ignored.
It can be seen that (12) is a set of linear equations with respect

to so
i and loi1. Thus, the nonlinear equations can be transformed

into linear equations by considering so
i and loi1 as independent vari-

ables. Then, they can be solved by the LS method. Next, loi1 will
be eliminated through the use of another LS minimization.

Let θ
(1)
1,p = [lo21, ..., l

o
M1, s

oT
1 , ..., soT

M ]T be the unknown vec-
tor. From (10) and (12), we have an error vector

ε
(1)
1,p = h

(1)
1,p − G

(1)
1,pθ

(1)
1,p, (14)

where

h
(1)
1,p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r2
21 + 2r21r

(1)
1

...
r2

M1 + 2rM1r
(1)
1

s1

...
sM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G
(1)
1,p =

⎡
⎢⎢⎢⎣I(M−1,M−1)

⎡
⎢⎣

2u(1)T −2u(1)T 0T

...
. . .

2u(1)T 0T −2u(1)T

⎤
⎥⎦

O(3M,M−1) I(3M,3M)

⎤
⎥⎥⎥⎦ ,

where 0 is a 3x1 column vector of zero and I is a identity matrix,
and O is a zeros matrix. Since G

(1)
1,p is a square matrix of size

4M-1, minimizing the second norm of ε
(1)
1,p yields

θ
(1)
1,p = G

(1)−1
1,p h

(1)
1,p. (15)

The error is composed of two parts, ε
(1)
1,p = [ε

(1)T
1,p,a, ε

(1)T
1,p,b]

T .
The first part is from left hand side of (12). The second part is from
the receiver position measurement (10). Thus, we have

ε
(1)
1,p,a = cB

(1)
1,p [∆t] + D

(1)
1,p∆r

(1)
1 , (16)

and ε
(1)
1,p,b =

[
∆sT

1 . . . ∆sT
M

]T

, (17)

where B
(1)
1,p = 2diag{r2, ..., rM}, D

(1)
1,p = 2[r21, . . . , rM1]

T ,

and ∆r
(1)
1 is the error of the range from the reference receiver

to the estimated emitter from Section 2.1. By using Taylor series
to expand (1) at the true values with i = 1, we obtain

∆r
(1)
1 =

−1

r
(1)
1

(
u(1) − s1

)T

∆s1,

where the second and higher order error terms are ignored. Hence
ε
(1)
1,p,a can be rewritten as

ε
(1)
1,p,a = C

(1)
1,p,a∆Ψ, (18)

where

C
(1)
1,p,a =

⎡
⎢⎢⎢⎣

M−1︷ ︸︸ ︷
2B

(1)
1,p

3︷ ︸︸ ︷
−2

r
(1)
1

⎡
⎢⎣

r21

...
rM1

⎤
⎥⎦ (

u(1) − s1

)T

3(M−1)︷ ︸︸ ︷
0 · · ·0

⎤
⎥⎥⎥⎦ ,

and ∆Ψ = [c∆t21, ..., c∆tM1, ∆sT
1 , ..., ∆sT

M ]T is the vector that
contains the TDOA measurement noise and receiver position noise,
and 0 is a Mx1 column vector of zero. Thus

ε
(1)
1,p =

[
ε
(1)
1,p,a

ε
(1)
1,p,b

]
=

⎡
⎣ C

(1)
1,p,a

· · · · · ·
O I

⎤
⎦ ∆Ψ = C

(1)
1,p∆Ψ (19)
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where O is a (3M)x(M-1) zero matrix and I is a 3M identity ma-
trix. By substituting h

(1)
1,p = h

(1)o
1,p + ∆h

(1)
1,p, G

(1)
1,p = G

(1)o
1,p +

∆G
(1)
1,p, θ

(1)
1,p = θ

(1)o
1,p + ∆θ

(1)
1,p and ignoring the second order er-

ror terms, (15) can be reduced to

∆θ1,p = G
(1)−1
1,p ε

(1)
1,p. (20)

From the weighted LS theory, the estimate of θ
(1)
1,p has a co-

variance matrix given by

cov(θ
(1)
1,p) = G

(1)−1
1,p C

(1)
1,pQC

(1)T
1,p G

(1)−T
1,p , (21)

where
Q = E[∆Ψ∆ΨT ] =

[
Qt OT

O Qp

]
, (22)

and Qt and Qp are the known covariance matrices of c2 times
TDOA noise and receiver position noise, respectively.

Because of the relationship between si and li1 as shown in
(13), the estimated values of li1 can be used to improve the receiver
position estimates by forming

ε
(1)
2,p = h

(1)
2,p − G

(1)
2,pθ

(1)
2,p, (23)

where

h
(1)
2,p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ
(1)
1,p(1)

...
θ
(1)
1,p(M − 1)

θ
(1)
1,p(M)2

...
θ
(1)
1,p(4M − 1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,G
(1)
2,p =

⎡
⎢⎢⎢⎢⎢⎣
1T −1T 0T

. . .
1T 0T −1T

· · · · · · · · · · · · · · · · · · · · ·
I(3M,3M)

⎤
⎥⎥⎥⎥⎥⎦ ,

θ
(1)
2,p =

[
(s1 � s1)

T · · · (sM � sM )T
]T

, (24)

0 is a 3x1 vector of zeros and � represents the Schur product.
Minimizing the weighted second norm of ε

(1)
2,p yields

θ
(1)
2,p = (G

(1)T
2,p W

(1)
2,pG

(1)
2,p)−1G

(1)T
2,p W

(1)
2,ph

(1)
2,p, (25)

where W
(1)
2,p is the weighting matrix given by E[ε

(1)
2,pε

(1)T
2,p ]−1|

θ2,p=θo
2,p

and θo
2,p is the true solution of θ2,p. The error vector

is resulted from the difference between the results from the first
stage, θ

(1)
2,p, and the true receiver position,

ε
(1)
2,p = B

(1)
2,p∆θ

(1)
1,p, (26)

where

B
(1)
2,p =

⎡
⎢⎢⎢⎢⎣
I(M−1,M−1) O(M−1,3M)

O(3M,M−1)

⎡
⎢⎢⎣

2θ
(1)
1,p(M) 0

. . .

0 2θ
(1)
1,p(4M − 1)

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ .

From (19), (20) and (26), ε
(1)
2,p becomes

ε
(1)
2,p = C

(1)
2,p∆Ψ, (27)

where C
(1)
2,p = B

(1)
2,pG

(1)−1
1,p C

(1)
1,p∆Ψ. The weighting matrix W

(1)
2,p

is then expressed as

W
(1)
2,p =

(
C

(1)
2,pQC

(1)T
2,p

)−1

. (28)

The position estimate s(1) = [sT
1 , ..., sT

M ]T is given by the square
root of θ

(1)
2,p

s(1) = P
[ √

θ
(1)
2,e(M) · · ·

√
θ

(1)
2,e(4M − 1)

]T

, (29)

where P = diag{sgn(θ
(1)
1,e(M)), . . . , sgn(θ

(1)
1,e(4M − 1))}, and

is used to remove the sign ambiguity of the square root operations

in (29). Error in the location estimate can be found by squaring
and taking differential of (29) as,

∆s(1) = B
(1)−1
3,p ∆θ

(1)
2,p = B

(1)−1
3,p G

(1)†
2,p C

(1)
2,p∆Ψ

(1)
2,p, (30)

where G
(1)†
2,p = (G

(1)T
2,p W

(1)
2,pG

(1)
2,p)−1G

(1)T
2,p W

(1)
2,p and B

(1)
3,p =

2diag{so
1, ..., s

o
M}. Hence, the position covariance matrix is

cov(s(1)) = B
(1)−1
3,p G

(1)†
2,p C

(1)
2,pQC

(1)T
2,p G

(1)†T
2,p B

(1)−T
3,p . (31)

2.3. Step 3: Re-estimation of emitter location
In this step, we estimate the emitter position again using the re-
ceiver position estimates from Section 2.2. By assuming that the
estimated receiver position from Section 2.2 is correct, then the
Chan and Ho [8] method is used to re-estimate the emitter loca-
tion. Therefore, Equations (3), (6), (8) are used to find the location
of the emitter.

CRLB often used as the benchmark for the performance of
an unbiased estimator. The details of the CRLB that considers
the receiver positions uncertainty can be found in [7]. We briefly
summarize the CRLB below. Let v =

[
rT , sT

]T
be the vector

that contains the TDOA measurements [r21, r31, · · · , rM1]
T and

the noisy sensor positions
[
sT
1 , sT

2 , · · · , sT
M

]T
. If p(v|θ) is the

probability density function of v parameterized on the unknown
vector θ, where θ =

[
uT , sT

]T
, then the CRLB is given by [7]

CRLB =

⎧⎨
⎩−E

⎡
⎣

(
∂2lnp(v|θ)

∂u∂uT

) (
∂2 ln p(v|θ)

∂u∂sT

)
(

∂2 ln p(v|θ
∂s∂uT

) (
∂2 ln p(v|θ)

∂s∂sT

)
⎤
⎦

⎫⎬
⎭

−1

. (32)

3. SIMULATIONS

This section provides the comparison of the performance of the
proposed solution method with that of the Chan and Ho method [8]
which does not take the receiver position errors into account and
the CRLB [7]. The positions of the receivers are {(0,0,600),(400,0,
0),(0,500,0),(350,200,100),(-100,-100,-100),(120,140,150),(60,70,
300)}. TDOA measurement vector is obtained by adding Gaussian
noise vector with the correlation matrix R to the true values, where
R is set to σ2

t in the diagonal elements and 0.5σ2
t otherwise [8].

Hence, Qt = c2R. The receiver position noise is independent at
different coordinates and receivers and is set to zero mean Gaus-
sian white noise. The receiver position noise and TDOA noise
are independent. The emitter is located at (2000,1900,1700). In
the simulation, the TDOA noise power, σ2

t , is fixed at 0.001/c2

and the results are generated by varying the receiver position noise
power, σ2

p. Each receiver has different noise powers and they are
σ2

p[1, 1, 1, 1, 75, 100, 25].
Figure 2 compares the proposed method and the Chan and Ho

method. It can be seen that the proposed method performs bet-
ter than the Chan and Ho method even for only one iteration. At
receiver position noise power 0.0001, our method gives approxi-
mately 1 dB better than the Chan and Ho method in the first iter-
ation and 3 dB after 9 iterations and give the same results after 21
iterations. In another word, after 9 or 21 iterations, the proposed
method is 1.99 times better than the Chan and Ho method. The
proposed method yields better results when the receiver position
noise is less than TDOA noise. From extensive simulation results,
we observed that, in general, the proposed method performs best
when the receiver position noise and TDOA noise are comparable.
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Fig. 1. Diagram of the proposed method.
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Fig. 2. Accuracy of emitter location estimate of the proposed
method.

Figure 3 depicts the comparison of the average MSE of the
receivers between the proposed method and the CRLB. The pro-
posed method achieves the CRLB bound when the receiver posi-
tion noise is moderate.

The proposed method has higher computational complexity
than the existing method [7]. The cost is about twice time higher
than that in [7] in each iteration. It provides, however, estimated
receiver location which can be used for subsequence estimation
task. Although the proposed algorithm is iterative, it does not re-
quire initial solution guesses and convergence is insensitive to the
noise power in the receivers.

4. CONCLUSIONS

This paper developed an iterative solution for estimating at alter-
nate the emitter location and the receiver positions based on TDOA
measurements, where the receivers have random position errors.
The solution method employs nuisance variables that allow both
emitter and receiver locations to be solved efficiently. Additional
processing is then applied by using the nuisance variable values to
improve the estimation accuracy of emitter and receiver positions.
The method requires only several WLS minimizations and no di-
vergence behavior has been observed. Simulation shows that the
estimation accuracy of the proposed source location method ap-
proaches the CRLB for Gaussian noise in small error region, and
is better than the Chan and Ho [8] method that does not take the
receiver position noise into account.
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Fig. 3. Accuracy of the receiver position estimates of the proposed
method.
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