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ABSTRACT

In this paper we propose an algorithm for acoustic source
localization and tracking that is suitable for reverberant en-
vironments. The approach that we propose is based on the
iterative identification of the FIR channels that link source
and microphones through an LMS method (Multi-Channel
LMS) [2], but we propose additional solutions that signifi-
cantly improve this method in terms of computational effi-
ciency and localization reliability, without affecting its con-
vergence properties. This is achieved through a modified
block-wise implementation of the approach combined with
Kalman filtering. We also show the results of extensive
comparative testing using novel performance parameters for
the assessment of localization reliability.

1. INTRODUCTION

Source localization algorithms based on microphone arrays
can be roughly divided into two broad classes: those that are
based on the identification of the source-mirophone chan-
nels, and those that are not. The former class of solutions
usually relies on a channel ideality assumption. In this case
the Direction Of Arrival (DOA) can be estimated from the
signal delays between adjacent microphones, which can be
derived by maximizing the cross-correlation between cor-
responding signals. Examples of this sort are Time Delay
Estimation, GCC-PHAT and SRP-PHAT (for an overview
see [1]). Other examples of methods that do not consider
channel identification are Beamforming, Capon Beamform-
ing and MUSIC), which are tailored on narrow-band sig-
nals (which is not usually the case of audio signals) and
estimate the source location from the phase displacement
between adjacent microphones. This choice turns the prob-
lem into a that of the estimation of spatial frequencies (see
[3]). The performance of all such methods, however, tend
to drop significantly in the presence of reverberation, as the
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channel ideality assumption is no longer satisfied. Meth-
ods based on channel identification are aimed at overcom-
ing this limitation. A popular solution of this sort is the
Multi-Channel Least Mean Square method MCLMS, which
is based on a preliminary iterative blind identification of the
transfer functions between source and microphones. The
MCLMS method then determines the direct echo signal in
the estimated impulse response and uses this information
to estimate the DOA. Compared with the methods that do
not perform channel identification, the MCLMS algorithm
shows a significant resilience against reverberations, but it
is quite computationally expensive and it produces results
that are not as stable as we would hope.

In this paper we propose a novel method to overcome
the above limitations of the MCLMS method. In fact, we
achieved a significant reduction of the computational cost
by working in a block-wise fashion, and for this reason
we refer to our approach as the Fast MCLMS algorithm.
This result is achieved without affecting the performance
or the convergence properties of the method. In order to
achieve better localization stability over time, we introduced
a source tracking algorithm based on Kalman filtering, with
significant improvement in the quality of the localization of
moving sources.

In order to assess the performance of our solution, we
conducted an extensive set of high-quality simulations with
various levels of environment reverberation. The data se-
quences were artificially generated with a fast beam tracing
algorithm of proven effectiveness and accuracy (it accounts
for reflections as well as diffraction) [4]. The performance
evaluation was conducted on our methos as well as vari-
ous other well-known solutions such as MCLMS, GCC and
MUSIC.

2. CHANNEL MODEL AND MCLMS METHOD

Our channel model is a SIMO system with one input sig-
nal (audio source) s(n) and M output signals xi(n) ac-
quired by the microphones (see Fig. 1). Each output sig-
nal is the convolution of the input signal with a different
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impulse response h. Neglecting, at this stage, the addi-
tive noise, we have xi(n) = s ∗ hi(n). Adopting a vector

Fig. 1. SIMO channel model used in MCLMS method
derivation.

form for the source-microphone impulse responses hi =
[hi(0) hi(1) ... hi(L − 1)]T , and for the i-th observation

xi(n) = [xi(n) xi(n − 1) ... xi(n − L + 1)]T , (1)

we have xi ∗ hj = s ∗ hi ∗ hj = xj ∗ hi, which gives

xT
i (n)hj = xT

j (n)hi . (2)

By grouping all the impulse responses in a single column
vector h = [hT

1 hT
2 ... hT

M ]T and using eq. (2), Huang and
Benesty [2] obtained:

Rh = 0 , (3)

where

R =

⎡
⎢⎢⎢⎣

∑
i�=1 Rxixi

−Rx2x1 ... −RxM x1

−Rx1x2

∑
i�=2 Rxixi

... −RxM x2

...
...

. . .
...

−Rx1xM
−Rx2xM

...
∑

i�=M Rxixi

⎤
⎥⎥⎥⎦

(4)
and Rxixj

= E[xi(n)xT
j (n)]. Eq. (4) shows that h can be

obtained in a blind fashion (without knowledge of source
statistics), using only second-order statistics of outputs. Eq.
(3) implies that h resides in the null-space of R which can
be used for deriving an LMS algorithm.

Let us consider, without loss of generality, a two micro-
phone system. The cross-correlation error between chan-
nels can be defined as

e(n) = xT
1 (n)h2 − xT

2 (n)h1 . (5)

By collecting the observations in a vector x = [xT
2 xT

1 ] and
the impulse responses in h =[hT

1 − hT
2 ]T , eq. (5) can be

written as
e(n) = hT (n)x(n) . (6)

In order to devise an LMS algorithm that converges to the
correct h vector, Huang identified the distance function

J(n) =
e2(n)

|| h(n) ||2 . (7)

which determines the optimal LMS solution [6] as ĥ =
argminh{E[J(n)]}. Using an iterative algorithm and up-
dating the h-estimate in the opposite direction to ∇J(n),
we obtain

ĥ(n+1) = ĥ(n)− 2µ

|| ĥ(n) ||2
[R̃ ĥ(n)−J(n) ĥ(n)] , (8)

where

R̃ =
[

x1(n) xT
1 (n) x1(n) xT

2 (n)
x2(n) xT

1 (n) x2(n) xT
2 (n)

]
(9)

and ĥ(n) is the h estimation at the n-th step of the LMS al-
gorithm. The convergence of the LMS algorithm is guaran-
teed if 0 < µ < 1

λmax
, where λmax is the maximum eigen-

value of R̃− J(n)I. Once a correct h-estimate is obtained,
we can find the two direct-echo delays from h1 and h2. Us-
ing the related delays we can determine the DOA. The final
source location can be triangulated from two or more DOA
estimators of this sort. The LMS algorithm can be rewritten
as

ê(n) = ĥT (n)x(n)

ĥ(n + 1) =
ĥ(n) − 2µê(n)[x(n) − ê(n)x(n)]

|| ĥ(n) − 2µê(n)[x(n) − ê(n)x(n)] ||
n = n + 1 (10)

If L is the length of the impulse response and Fs the
sampling frequency, then the computational cost (expressed
in flops/sec) of MCLMS algorithm is O = 8LFs. This
cost is usually too high for real-time applications. In the
next Section we will show how to reduce it by updating the
h-estimate with blocks of data without affecting (under a
stationariety assumption) the convergence properties. For
reasons of simplicity, we will consider the case of a pair of
microphones, although the algorithm can be easily devel-
oped for the more general case of M sensors.

Another drawback of MCLMS method (and, in general,
of all localization algorithms) is the likelihood of faulty lo-
calizations. in order to regularize the trajectory of a moving
source, we thus implemented a Kalman filtering algorithm.

3. FAST-MCLMS WITH KALMAN FILTERING

Let xi[n, n + L + 1] be the observations acquired between
time n and time n + L + 1. Using the same notation for the
input signal s, we can write

xi[n, n + L + 1] = h ∗ s[n, n + 2L + 1] . (11)
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According to eq. (10), n is updated at every step, thus pro-
ducing a new observation at every step of the algorithm. We
here modify the MCLMS algorithm in such a way to use
a block of f contiguous data at each step of the algorithm.
This way eq.(11) becomes

xi[n+f, n+f+L+1] = h∗si[n+f, n+f+2L+1] , (12)

and the new LMS algorithm becomes:

ê(n) = ĥT (n)x(n)

ĥ(n + 1) =
ĥ(n) − 2µê(n)[x(n) − ê(n)x(n)]

|| ĥ(n) − 2µê(n)[x(n) − ê(n)x(n)] ||
n = n + f (13)

Notice that using f new observations at each step leads to
errors and channel estimations that differ from those of the
MCLMS algorithm.

We will now prove that, under the assumption of a sta-
tionary source, the convergence properties of the MCLMS
and the Fast-MCLMS algorithms coincide. Let

A = E[R̃(n) − J(n) I]

AF = E[R̃(nf) − J(nf) I]

be the average iteration matrices of the MCLMS and the
FMCLMS algorithms, respectively. Assuming that x1 and
x2 are stationary processes, we have

E[�R(nf)] =

�
E[x1(nf)xT

1 (nf)] E[x1(nf)xT
2 (nf)]

E[x2(nf)xT
1 (nf)] E[x2(nf)xT

2 (nf)]

�
=

=

�
E[x1(n)xT

1 (n)] E[x1(n)xT
2 (n)]

E[x2(n)xT
1 (n)] E[x2(n)xT

2 (n)]

�
=

= E[�R(n)] ,

and

E[J(nf)] = E[(xT
1 (nf) h2 − xT

2 (nf) h1)] =
= E[(xT

1 (n) h2 − xT
2 (n) h1)] ,

therefore we can conclude that, if x1 and x2 are stationary
processes, then AF = A.

The case of M microphones can be developed exactly
as shown above. The only differences to be noted are in the
expressions of eq. (13), which needs to be modified accord-
ing to eq. (8). Furthermore, the distance function (7), and
therefore its gradient, takes on a more complex expression.
All this will result in higher computational costs.

In order to make the localization more stable over time
we introduce a source tracking process based on Kalman fil-
tering [5]. Let y(k) = [x(k) y(k)]T be a vector containing
the source position estimated by a localization algorithm.
The internal model is described by a state vector containing

position and source velocity x(k) = [x(k)
.
x(k) y(k)

.
y(k)]T .

Observation and state vectors are linked by

y(k) = Hx(k) + n(k) , (14)

where

H =
[

1 0 0 0
0 0 1 0

]
,

while n(k) is a a additive white gaussian noise with covari-
ance matrix R. The state-update equation is

x(k + 1) = A x(k) + v(k) ,

where

A =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ ,

T being the temporal distance between successive observa-
tions, and v(k) being a state noise with covariance matrix
Q. Let x̂−(k) and x̂(k)) be the a-priori and the a-posteriori
estimations, respectivley, of the state vectors, which are ob-
tained from the observations until k − 1 and k. The a-
priori and the a-posteriori errors are defined as e−(k) =
x(k)− x̂−(k), and e(k) = x(k)− x̂(k), which are charac-
terized by the following covariance matrices

P−(k) = E[e−(k) e−T (k)] ,

P(k) = E[e(k) eT (k)] ,

respectively. The a-posteriori and a-priori estimations will
be linked by

x̂(k) = x̂−(k) + K(y(k) − Hx̂−(k)) ,

where y(k) − Hx̂−(k) is the innovation and

K(k) = P−(k)HT (HP−(k)HT + R)−1

is the filtering gain (see Fig. 2).

(1) Predicts state

(2) Predicts covariance error

Prediction

�
x��k� � A

�
x��k � 1�

P��k� � AP��k � 1�AT

(1)Compute Kalman gain

(2)Update Estimation with measures

(3)Update error covariance

Measures correction

K�k� � P��k�HT�HP��k�HT
� R��1

�
x�k� �

�
x��k� � K�y�k� � H

�
x��k��

P�k�� �I � K�k� H � P��k�

Initial estimation for

and

P�k � 1�
�
x��k � 1�

Fig. 2. Kalman algorithm.
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4. RESULTS AND CONCLUSIONS

We compared the performance of FMCLMS with MCLMS
and other non identificative-methods (GCC and MUSIC).
In order to do so we simulated the acquisitions of an array
of 8 microphones in a rectangular room using an advanced
and accurate simulation method based on beam tracing [4].
This allowed us to track a moving speaker as we varied the
reverberation level by changing the reflection coefficients.

Fig.3 shows which fraction of all localizations turned
out to be correct (error below 2 degrees), in the various lo-
cations of the room. In this experiment the reflection coef-
ficients was set to 0.9 (strongly reverberating room). As we
can see, the Fast MCLMS method (with f = 16 and f =
32) localizes the audio source accurately in a wider area
with respect to GCC and MUSIC. Fig. 4 shows the average

Fig. 3. Fraction of correct localizations for various algo-
rithms in the test room.

localization error of several algorithms as reflection coef-
ficient goes from 0.1 to 0.9. As we can see, the new algo-
rithm performs comparably to MCLMS and better than non-
identificative localization methods. Fig.5 shows the perfor-
mance improvement due to Kalman filtering. A speaker fol-
lowing a circular trajectory of 2 m of radius around the mi-
crophone array is localized and tracked by the system. The
range of DOA considered for the tracking is−45◦, . . . ,+45◦.
As we can see, the impact of the Kalman filtering to local-
ization stability is quite relevant, as it allows us to reduce
the update rate of the filter a great deal without introducing
tracking inconsistencies. The factor f , in fact gives us an
approximate idea of the complexity reduction factor that we
introduce. As a general rule, values of f between 16 and
32 turn out to be a good choice for most situations of inter-
est, as they provide a good compromise between estimation
consistency and computational efficiency.

Fig. 4. A comparison of average localization error obtained
with various methods.

Fig. 5. Performance improvement obtained with adoption
of Kalman filtering
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