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ABSTRACT

Sound source localization systems typically measure differ-
ences in time-of-arrival between pairs of microphones in
free field arrays. Using a different concept, we previously
designed and built a localization system that mimics na-
ture’s solution of harnessing wave diffraction about the head
while relying only on two sensors positioned antipodally.
One of its important advantages is the generation of inten-
sity difference information, in addition to time/phase differ-
ences. This sensor configuration is limited, however, by its
intrinsic axial symmetry. Here I depart from the constraint
of two sensors while retaining the advantages of a diffract-
ing “head”, by introducing a symmetric array of three mi-
crophones placed equidistantly on a diffracting sphere. De-
tailed computations reveal that this design is capable of su-
perior broadband localization of 1o resolution in the plane
of the microphones. Experimental work is under way to
verify these calculations.

1. INTRODUCTION

The localization of sound sources is useful for various pur-
poses, and it can also aid the separation of signals from
multiple sources and in their identification. Designed sys-
tems typically comprise free field sensor arrays for extrac-
tion of directional information. Most measure differences
in time of arrival between combinations of pairs of micro-
phones. Applications include the localization and track-
ing of speakers in conference rooms and improved hearing
aids having directional sensitivity; see [1] for a comprehen-
sive overview. Several groups installed free field micro-
phone rigs on mobile robots also using time of arrival dif-
ferences between microphone pairs [2–4]. A recent robotic
localizing device was based on a pair of free field micro-
phones which were rendered directional by means of reflec-
tors placed around the microphones [5]. This augmented the
usual time difference information with intensity difference.

In nature, directional acoustic sensing evolved to rely
on diffraction about the head with only two sensors — the

ears. The impinging sound waves are modified by the head
in a frequency and direction dependent way. The inner ear
decomposes the sound pressure signal into frequency bands.
The brain then uses interaural differences in phase (IPD)
and intensity level (ILD) in the various frequency bands to
infer the location of a source [6, 7].

Inspired by human sound localization, we previously
designed and built a localization system that mimics na-
ture’s solution of harnessing wave diffraction about the head
while relying only on two sensors positioned antipodally
[8–10]. One of its important advantages is the generation of
intensity difference information, in addition to time/phase
differences. This sensor configuration is limited, however,
by its intrinsic axial symmetry: it allows localization only
up to a circle around the interaural axis. In order to break
this symmetry, we introduced dynamic localization [8]
which enabled our robot mounted system to successfully
distinguish between the front and back directions and to lo-
calize sources with accuracy of 2o [10].

We also conducted preliminary computational studies
aimed at breaking the axial symmetry with a different ap-
proach, by positioning the two microphones in configura-
tions that deviate from the antipodal. We found that such
asymmetric positioning of two microphones at angular sep-
aration of about 100o − 120o provides unique horizontal
localization [8]. It seemed, however, that localization preci-
sion would be non-uniform in the various directions.

Here I depart from the constraint of two sensors while
retaining the advantages of a diffracting “head”, by intro-
ducing a symmetric array of three microphones placed equi-
distantly on a diffracting sphere. In the present paper I con-
sider planar, or approximately planar localization problems
(as often relevant for mobile robots), so the source is in or
close to the plane determined by the microphone and the
center of the sphere. The arc distance between each pair of
microphones is therefore 120o, which we previously found
to be optimal.

Section 2 describes the acoustic calculations and the lo-
calization algorithm, followed by results and a discussion.
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2. THE LOCALIZATION ALGORITHM

Consider a point source at r0 = (r0, θ, φ), in spherical
polar coordinates, which emits sound pressure flux of
F (ω)e−iωt in the angular frequency component ω. The re-
sultant pressure on the surface of a diffracting sphere of ra-
dius r is obtained for each frequency component ω by solv-
ing the Helmholtz equation with Neumann boundary condi-
tions [11, 12]:

pω =
iρcF (ω)e−iωt

4πr2

∑

n

(2n + 1)Pn(cos θ)
hn(kr0)
h′

n(kr)
(1)

where ρ is the mass density of air, Pn are the Legendre func-
tions, hn are the spherical Hänkel functions, and k=ω/c is
the wave number (c being the speed of sound); primes de-
note derivatives. The nature of the solution is such, that it
does not depend on the azimuthal angle, φ, i.e. the angle
of elevation relative to the plane determined by the source,
the center of the sphere and the microphone [8]. In addi-
tion, except for the near-field, i.e. sources very close to the
sphere, the pressure on its surface is insensitive to the source
distance r0.

The measured sound pressure (1) is a complex response
to the excitation in frequency ω:

pω =Aeiα−iωt (2)

where A is the amplitude, and α is the part of the phase
containing spatial information. For microphones j and k
in the array, we define the Interaural Level Difference and
Interaural Phase Difference:

ILDjk = log Ak − log Aj IPDjk = αk − αj , (3)

which are both smooth functions of frequency. We consider
the ILD-IPD plane as a basic feature space for localization.
Every source direction and emission frequency induce an
“active” point in the ILD-IPD plane of a microphone pair.
Since ILD and IPD depend smoothly on frequency, a broad-
band sound source generates a whole curve σ(ω) in this
plane. This curve is the source’s specific signature which
depends on its location [8].

The picture, so far, can be summarized as follows: a
source at position r0 in the plane emits sound which is
mapped through the scattering process, S, to a pair of sound
pressure measurements, i.e. a pair of smooth complex func-
tions of some frequency interval Ω. Extracting the interaural
— i.e. relative — phase and intensity reduces them to a pair
of Real functions (operation I):

R
2 S−→ CC(Ω) × CC(Ω) I−→ CR(Ω) × CR(Ω)

r0
S�−→ (pk, pj)

I�−→ (ILDjk, IPDjk)
(4)

The task is to prescribe a localization operator that by us-
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Fig. 1. Localization metric for sources at all possible
directions for a triangular spherical array.

ing all such pairwise measurements would, in effect, invert
(4) to recover the source direction. We do so by defining
the squared L2 norm distance between the measured inter-
aural functions (ILDjk, IPDjk) and the theoretical functions
(IPDjk(θ), ILDjk(θ)). These theoretical signatures, which
were previously calculated using the analytical solution of
the full 3D acoustic scattering problem (1), are stored in a
table. The IPD component of the metric for micrphone pair
jk is:

DIPD
jk (θ) ≡ ‖IPDjk(θ) − IPDjk‖2

2

=
∑

ω (IPDjk(θ, ω) − IPDjk(ω))2 ,
(5)

and similarly for ILD. Marking the three microphones nu-
merically from 1 to 3, ILD and IPD are thus calculated for
all pairs of microphones with positive permutation, namely
2-1, 3-2, and 1-3, thereby accounting for all three possible
pairs. ILD and IPD terms are then summed separately:

DILD =
∑

π(jk)>0

DILD
jk , DIPD =

∑

π(jk)>0

DIPD
jk , (6)

to produce the overall ILD and IPD metric components. In
order to avoid unbalanced contribution from the two, each
is then normalized with respect to its maximal value (over
θ). The two components are then combined to produce the
total distance function:

DTot(θ) = DIPD + DILD. (7)

Finally, the angle which obtains the minimum of the metric
is assigned to the source direction:

θ0 = argminθ(D
Tot(θ)). (8)
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Fig. 2. Triangular spherical array: The metric provides
unique localization of sources.

3. RESULTS

The above prescribed metric was calculated for all possi-
ble source directions at 1o intervals, resulting in a 360×360
numerical matrix of distances between source directions and
tested directions. This matrix is plotted in Figure 1. The
“topography” of the metric has a broad valley along the di-
agonal, with a deep narrow gorge at its center exactly on the
diagonal itself. Indeed, this is an ideal structure for such a
function because for each possible source direction it would
clearly mark the correct direction. Figure 2 shows the met-
ric function for several source directions. For each of them,
the function has a needle-like minimum at the correct value.

Although the numerical calculations were performed on
a grid of 1o × 1o granularity, this in itself does not guaran-
tee 1o localization acuity. Indeed, the system we built and
tested previously using only one pair of antipodal micro-
phones achieved slightly lower resolution of 2o [10]. We
therefore test here by computation whether the metric for
the triangular array can distinguish between sources sepa-
rated by mere 1o. Figure 3 shows the metric function for
several adjacent sources only 1o apart. Even at this small
separation the metric has sharp minima at the correct values,
thus clearly distinguishing between them. The figure shows
the metric around 180o; it was tested, however, for all 360o

directions and found to be uniformly accurate throughout.

4. DISCUSSION

This paper builds on our previous work of designing sound
localization systems which utilize a diffracting sphere to
generate intensity information, in addition to time/phase in-
formation available in popular free field microphone arrays.
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Fig. 3. Triangular spherical array: Localization metric
distinguishes between sources separated by mere 1o.

Our previous work was inspired by nature’s solution which
relies only on two sensors. The present paper shows that by
adding another sensor and arranging the array in a triangu-
lar symmetric configuration, the sharpness of localization
is substantially enhanced and its acuity can increase to 1o

uniformly in the 2π circle of directions. One of the reasons
such high resolution is possible with a small number of sen-
sors is that this localization method is based on the physics
of the problem and the diffraction process whereby the so-
lution and algorithm are completely analytical.

As mentioned in the introduction, we previously found
that placing two microphones on the diffracting sphere at
120o arc distance from each other could give unique local-
ization, but non-uniformly in directions. Compared with
such single asymmetric pair, the new symmetric array of
three microphones has three pair measurements of ILD and
IPD. Their optimal localization directions cover different
sectors of the circle. This mutual augmentation contributes
to the high acuity and to its uniformity in direction. It can be
contrasted with linear time-of-arrival (TOA) systems using
digital signal processing. The discretization of the signal by
sampling combined with the geometry of these arrays may
result in non-uniform localization performance in the vari-
ous directions.

Experimental work is under way to verify the computa-
tional results presented here.
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