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ABSTRACT

In this paper we propose an extension of the soft-gating ap-
proach for measurement-to-target assignment for multitar-
get tracking. Given the latest observation and a set of mul-
titarget particles, the proposed method combines efficient
m-best 2-D data assignment and sampling methods to com-
pute a feasible measurement-to-target assignment with an
associated probability for each particle. The particles con-
taining the multitarget states and the association vectors can
then be used to recursively estimate the posterior distribu-
tion of the targets using sequential Monte Carlo methods.
Computer simulations demonstrate the robustness and ef-
fectiveness of the proposed method for data association and
multitarget tracking.

1. INTRODUCTION

Multitarget tracking (MTT) [3, 4, 5] is an essential require-
ment for surveillance systems using one or multiple sensors
to monitor the environment. Typical applications can be
found in navigation, air trafic control, and military surveil-
lance systems. Classical approaches, such as the Joint Prob-
abilistic Data Association Filter (JPDAF) and its numerous
derivatives [4, 6], have demonstrated their ability in track-
ing multiple targets by considering all or part of the com-
binations of measurement-to-target assignments. However
these methods generally suffer from two drawbacks. Firstly,
as the number of measurements increases for the multitar-
get scenario, the computational intensity for data associa-
tion becomes formidable. To alleviate the computational
load, one may use a gating approach [4, 6] to eliminate un-
likely measurement-to-target pairings. Doing so, however,
may lead to incorrect assignment especially when targets
are closely spaced. Secondly, as Kalman Filter (KF) type
algorithms, including the extended Kalman Filter (EKF),
[4, 5, 6] are usually used for target state estimation, these
classical approaches are subject to failure in target tracking
if the data models are highly nonlinear and non-Gaussian.

In this paper we propose a new measurement-to-target
assignment approach that combines the m-best 2-D data as-
signment algorithm [4, 6] and sampling methods, such as
the soft-gating approach [1, 2] for data association, given
the latest observation and a set of multitarget state particles.
This method takes advantage of the efficiency of the m-best
2-D data assignment method, and is compatible with a se-
quential Monte Carlo (SMC) framework [7]. These parti-
cles, comprising the multitarget states and the association
vectors, can be used to recursively estimate the posterior
distribution function of the targets, using SMC [8, 9, 10]
which are able to perform well in the situations where the
KF type algorithms fail.

This paper is organised as follows. Section 2 presents a
general state-space model for the MTT problem, and de-
scribes the derivation of the necessary probability distri-
butions. Section 3 presents the proposed data association
method. Simulation results are given in Section 4, followed
by the conclusions in Section 5.

2. DATA MODEL

Let xt be a combined target state vector for K targets, i.e.,
xt = [xT

1,t, ...,x
T
k,t, ...,x

T
K,t]

T , where each target indepen-
dently [11] follows a dynamic model given by

xk,t = fk(xk,t−1, vk,t), k ∈ {1, ..., K}, (1)

where xk,t denotes the state vector of the kth target, and
fk(·), which models the motion of the target, can be a linear
or nonlinear function. The noise vk,t is a zero-mean random
variable with a fixed and known covariance matrix Σv .

In this paper, a single sensor is employed, but the entire
framework can be readily extended for multiple sensors. Let
yt = [yT

1,t, ...,y
T
m,t, ...,y

T
Mt,t

]T be an observation received
by the sensor with Mt measurements. The mth measure-
ment may originate from a true target or clutter. To distin-
guish between the measurements due to targets and clutter,
an association vector αt = [α1,t, ..., αm,t, ..., αMt,t]

T is de-
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fined. It is assumed that the measurement-to-target assign-
ment is always on a one-to-one basis. That is, at a given
time t a measurement (target) can always be assigned to
only one target (measurement). If ym,t is associated with
the kth target, αm,t = k, then ym,t can be expressed as

ym,t = gm(xk,t,wm,t), (2)

where gm(·), the mth observation model, may be a linear
or nonlinear function, wm,t, mutually independent of vk,t,
is also a zero-mean random variable with a fixed and known
covariance matrix Σw. While a true target may exist, it may
not be detected when, for example, the probability of target
detection PD is low, and its measurement may not be re-
ceived by the sensor, leading to data loss. On the contrary,
αm,t is set to zero if ym,t originates from clutter, whose
distribution is assumed uniform over the surveillance region
[4, 6]. From this point onward, it is assumed that all targets
share the same evolution model, and that all measurements
share the same observation model.

Following the framework in [1, 2, 12], we adopt the
assumption that αt is a stochastic variable that is depen-
dent on the current multitarget state and observations. We
may jointly estimate {xt, αt} by sequentially estimating
the posterior distribution p(xt, αt|y0:t) using SMC meth-
ods, also known as particle filters [8, 13, 14]. We may for-
mulate a SMC framework in terms of prediction and update
equations for N particles [1, 2, 12] as follows

(x(i)
t ,α

(i)
t ) ∼ q(xt, αt|x(i)

t−1, α
(i)
t−1,yt),

= p(x(i)
t |x(i)

t−1) q(αt|x(i)
t , yt),

(3)

w
(i)
t ∝ w

(i)
t−1

p(yt|x(i)
t , α

(i)
t )p(α(i)

t |x(i)
t )p(x(i)

t |x(i)
t−1)

q(xt,αt|x(i)
t−1,α

(i)
t−1, yt)

,

(4)
where i ∈ {1, ..., N} and

∑N
i=1 w

(i)
t = 1. The terms

p(x(i)
t |x(i)

t−1) and q(αt|x(i)
t ,yt) in (3) are the combined dy-

namic prior in (1) for K targets and the association pro-
posal, respectively, whereas the terms p(yt|x(i)

t , α
(i)
t ) and

p(α(i)
t |x(i)

t ) in (4) are the combined likelihood for Mt mea-
surements in (2) and the association prior, respectively. De-
tails about these priors can be found in [1, 2, 12].

Unlike the soft-gating approach [1, 2] that sequentially
samples the elements of α

(i)
t , we propose to jointly sample

the elements of α
(i)
t . We use the 2-D assignment algorithm

discussed in Section 3 to compute the m-best associations,
and then define a discrete proposal distribution over these
assignments with the corresponding proposal probabilities
given by the assignment algorithm, i.e., {α(i)

t , u(α(i)
t )}.

Substituting the particles {α(i)
t , u(α(i)

t )}N
i=1 into (4) yields

w
(i)
t ∝ w

(i)
t−1

p(yt|x(i)
t ,α

(i)
t )p(α(i)

t |x(i)
t )

u(α(i)
t )

. (5)

3. M-BEST 2-D MEASUREMENT-TO-TARGET
ASSIGNMENT ALGORITHM

The 2-D assignment algorithm [4, 6] is an intuitive method
for solving classical assignment problems, which includes
the data association problem for MTT applications, given
that the assignment is always on a one-to-one basis. How-
ever, this single-scan approach to data association may not
provide reliable performance, leading to track loss and im-
properly partitioned measurements into tracks and false
alarms. Therefore, determining the m-best solutions be-
comes especially important, since the hard irrevocable de-
cisions that the best-solution approaches make can be miti-
gated using the m-best assignment algorithm [4, 6].

The measurement-to-target assignment problem can be
cast as a constrained optimisation problem [4, 6] that max-
imises a function C(·) as follows

a
(j)
t = arg max

at∈A(j)

{
C(αt,xt, yt)

}
, (6)

where a
(j)
t , the jth best solution in the feasible solution

space A(j), can be easily mapped to αt
1, subject to

K∑
k=0

a
(j)
l,k = 1, l ∈ {1, ...,Mt}, (7)

Mt∑
l=1

a
(j)
l,k = 1, k ∈ {1, ...,K}, (8)

A(j) ∈ A −
j−1⋃
p=1

a
(p)
t , (9)

where A is the space for all feasible assignments. The con-
straints in (7) and (8) ensure that the feasible solution is a
one-to-one measurement-to-target assignment, and (9) en-
sures that the jth best solution does not overlap with the
other solutions. The l, kth elements of C(αt,xt,yt) is the
probability of assigning yl,t to target k, given by

cl,k =

⎧⎪⎪⎨
⎪⎪⎩

0, if k = 0,

log
{

PD p(yl,t|xt,αl=k)

p(yl,t|αl=0)

}
, if log(·) > 0,

−∞, otherwise,

(10)

l ∈ {1, ..., Mt}. Accordingly, this problem can be reformu-
lated [4, 6], subject to these constraints as

a
(j)
t = arg max

K∑
k=0

Mt∑
l=l

cl,k a
(j)
l,k . (11)

1The mapping from a
(j)
t to αt is easy, i.e., if a

(j)
l,k = 1, then α

(j)
l,t = k.

Otherwise, α
(j)
l,t = 0.
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Parameters Values
Σv diag([5 × 10−4, 5 × 10−4])
Σw diag([0.0001, 25])
T 300
N 500

Table 4.1. Parameters for computer simulation.

N the best the m-best Soft-gating
50 58.1 % 54.5 % 61.1 %
100 20.3 % 17.8 % 35.0 %
200 8.4 % 8.0 % 10.5 %
500 2.9 % 2.7 % 5.6 %
1000 2.6 % 2.4 % 2.4 %
5000 2.6 % 2.4 % 2.4 %
10000 2.3 % 2.2 % 2.2 %

Table 4.2. Comparison of the average probability of mis-
assignment between the best solution, the m-best solution,
and the soft-gating algorithms for different values of N in
50 independent runs.

Given the set of m-best solutions2 and their asso-
ciated probabilities {u(α(j)

t )}m
j=1, where u(α(j)

t ) ∝
exp(

∑
l,k∈a(j)

t
cl,k) and

∑m
j=1 u(α(j)

t ) = 1, one can form
the point-mass proposal distribution function for αt from
which an association vector αt, with associated probability
u(αt), can be sampled, i.e.,

αt ∼ q(αt|xt, yt) =
m∑

j=1

u(α(j)
t )δ(αt − α

(j)
t ). (12)

4. COMPUTER SIMULATIONS

In this section, we evaluate the performance of the proposed
MTT algorithm on a challenging synthetic tracking prob-
lem. Fig. 1 depicts K = 3 tracks for T = 300 scans, each
evolving according to a near constant velocity model [11]
with parameters summarised in Table 4.1. The surveillance
region in this simulation is [−2000, 2000]2. The observa-
tions generated comprise target and clutter measurements,
where the spatial density of clutter is controlled by the ex-
pected number of clutter measurement, ΛC = 5. In addi-
tion, the probability of target detection is set to PD = 0.5.
The multitarget states are initialised around their true mean
with large variances. The state and observation noises in
(1) and (2) are assumed to be white Gaussian and their co-
variance matrices are shown in Table 4.1. It can be seen

2The value of m can be determined by checking whether u(α
(m)
t )

is significant, say 1%, when compared with the culmulative probability∑m
j=1 u(α

(j)
t ).
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Fig. 1. A comparison between the true tracks and their esti-
mates.

that not only are the tracks closely tracked by the algorithm,
they are also unambiguously and successfully resolved by
the proposed algorithm after they cross each other.

We also compared the misassignment of the best solu-
tion approach [4, 6, 12], the soft-gating algorithm [2], and
the proposed method for data association, based on the same
scenario shown in Fig. 1. A misassignment occurs when a
measurement, be it originated from a true target or clutter, is
incorrectly assigned to a detected target. For example, if a
clutter measurement or a measurement originating from an-
other target is assigned to a target, a misassignment occurs.
As shown in Table 4.2 these methods have a comparable
performance for large N , but when N is small the proposed
method outperforms the other methods.

Finally, the performance of the proposed method and
the other two approaches as a function of different num-
bers of particles N is compared in terms of the Root
Mean Square Error (RMSE), defined as RMSEl =√

1
KT

∑T
t=1 ||xt − x̂l

t(N)||2, where RMSEl is the error

for the lth independent run, and x̂l
t(N) is a posterior mean

estimate of xt for the lth run with N particles. For each
value of N , a total of 20 independent runs were used with
the same synthesised tracks but different observations. Ac-
cording to Fig. 2, the RMSE decreases as N increases, at
the expense of an increased computational load.

5. CONCLUSIONS

In this paper we presented a new method for data association
for multiple target tracking. Combining an efficient data as-
signment algorithm and sampling techniques, the proposed
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Fig. 2. RMSE evaluated for different values of N . Each
vertical line on the curve represents the 1-σ error bars of the
RMSE at a particular value of N .

method fits into the sequential Monte Carlo framework
for recursively and jointly estimating the measurement-to-
target assignment and multitarget states, given the latest ob-
servation. The computer simulations and performance eval-
uation showed that the proposed algorithm performed well
in its intended areas, and also outperformed its predeces-
sors.
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