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ABSTRACT

A new method for target localization by radar or sonar sys-
tems based on spatially coded signal transmission is pro-
posed. Recently, it has been shown that spatially-coded
signal transmission allows obtaining virtual sensors. We
show that for any array geometry, these virtual sensors
are grouped into subarrays with identical structures. The
transmission diversity, embedded in the spatially-coded sig-
nal model, is used to spatially smooth the signal covariance
matrix in order to enable using eigenstructure-based meth-
ods for multiple coherent target localization. Unlike conven-
tional spatial smoothing and forward-backward averaging,
the proposed Transmission Diversity Smoothing (TDS) al-
gorithm is not limited to uniform or symmetric arrays, and
does not decrease the array aperture. The performance
of the algorithm implemented with MUSIC is tested using
simulations and compared to the spatial smoothing method.
The results show that the TDS algorithm is consistent and
outperforms the spatial smoothing method.

1. INTRODUCTION

Orthogonal signal transmission for radars and active sonars
has recently been proposed in [1] and [2]. Space-time coding
of the transmitted signal was presented and its properties
was analyzed. The main advantages of this new configu-
ration include: 1) digital beamforming of the transmitted
beams, 2) extension of the array aperture by virtual sensors,
resulting in narrower beams, 3) virtual spatial tapering of
the extended array aperture, resulting in lower sidelobes,
4) higher angular resolution, 5) larger number of targets
which can be detected and localized, and 6) lower spatial
transmitted peak power density.

In many radar and sonar applications, the received sig-
nals from di erent directions are fully correlated. One well
known reason of coherency is multipath. In active radar
and sonar systems, the received echo signals from di erent
targets are also considered as coherent. The reason is that
although the phases of the echo signals vary between the
di erent pulses or snapshots due to the Doppler e ect, opti-
mal target parameters estimation requires Doppler filtering
of the received signal before targets directions estimation.
The signal phases after Doppler processing are almost con-
stant. Moreover, the amplitude of the echo signal is usually
constant during transmission of several snapshots. There-
fore, the echo signals from di erent targets are considered
as coherent. This implies that eigenstructure-based meth-

ods, such as MUSIC and ESPRIT cannot be directly imple-
mented for multi-target localization, because these methods
fail in scenarios in which the received signals are fully cor-
related.

In order to “decorrelate” the signals in the data co-
variance matrix, Evans et al. [3] proposed a preprocessing
technique referred to as spatial smoothing. Several authors
[4] - [5] investigated this method, combined with forward-
backward averaging. The drawback of this approach is the
reduction of the e ective array aperture length, resulting in
lower resolution and accuracy. An alternative “decorrela-
tion” method is redundancy averaging [6], [7]. In [8], it is
shown that this preprocessing method induces bias in the
DOA estimates.

In this paper, we show that the virtual sensors, ob-
tained from uncorrelated signal transmission, are grouped
into subarrays with identical structures. This enables spa-
tial smoothing of the signal covariance matrix, followed by
eigenstructure-based methods for multiple coherent target
localization. Unlike conventional spatial smoothing, the
proposed Transmission Diversity Smoothing (TDS) algo-
rithm is not limited to uniform arrays, does not assume
spatially white noise, and does not decrease the array aper-
ture. Moreover, for an array of M elements, the number of
targets which can be localized using the TDS algorithm
is M 1, while with spatial smoothing, combined with
forward-backward averaging, the maximum number of tar-
gets is 2M/3.

2. SPATIALLY CODED SIGNAL MODEL

Consider anM-element antenna array transmittingM narrow-
band signals. The samples of baseband equivalent signals
are denoted by the vectors s[n] = [s1[n], . . . , sM [n]]

T , n =
1, . . . , N where {sm[n]}

N
n=1 denotes the transmitted signal

by the mth element and n represents the time index. The
correlation matrix of s[n] is given by

Rs =
1

N

N

n=1

s[n]sH [n] =

1 12 · · · 1M

21 1 · · · 2M

...
...

. . .
...

M1 M2 · · · 1

,

(1)
in which ij is the correlation coe cient between the ith
and jth signals. The phases of { ij}

M
i,j=1 control the trans-

mitted beam direction of the coherent component of the
transmitted signal. In the case of orthogonal transmitted
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signals ({ ij}i=j = 0), the correlation matrix is an iden-
tity matrix: Rs = IM , i.e. omni-directional transmission.
In common radar systems, coherent signals are transmitted
by the array and therefore the rank of Rs is equal to one.

1

In the presence of a single target at direction with no
multipath, the received signal at the mth element of the

array located at xm = x
(1)
m , x

(2)
m

T

(see Fig. 1), is given

by:

ym[n] =
M

i=1

Ami( )si[n] + wm[n], m = 1 , . . . ,M

n = 1 , . . . ,N

(2)

where denotes the complex amplitude of the received sig-
nal, wm[n] is the additive noise at the mth element, and
Ami( ) = exp( jwc mi( )) describes the total array re-
sponse of the signal, transmitted by the ith element and
received by the mth element, where wc is the carrier fre-
quency. The total accumulated phase from the ith trans-
mitting element to the mth receiving element for the far-
field case can be written as

c mi( ) = c( m( )

receive

+ i( )

transmit

) = kT ( )(xm + xi) , (3)

where k( ) = 2 [sin , cos ]T and stands for the signal
wavelength.

)1(
x

)2(
x target

m
x

i
x

1x

M
x

Figure 1: Array configuration

Let am( ) denote the spatial response of the mth ele-
ment. Then, the mith element of the array response matrix,
Ami( ), can be decomposed as:

[A( )]mi = Ami( ) = exp( jwc( m( ) + i( ))) =
= am( )ai( ), m, i = 1, . . . ,M .

(4)
Note that the elements ofA( ) depend on through all pos-
sible combinations of delays in transmit and receive modes.
In fact, Aim( ) is the array response for transmit from the
ith element and receive by the mth element. Hence, the
array response matrix can be written as

A( ) = a( )aT ( ) , (5)

1The di erent elements transmit the same signal with phase
shifts for beam steering.

where a( ) is the transmitted or the received array response
vector. In matrix notation, Eq. (2) can be stated as:

y[n] = A( )s[n] +w[n], n = 1, . . . , N , (6)

where y[n], s[n] and w[n] are vectors of the received signal,
the transmitted signal and the additive noise, respectively.

In the case of L targets scenario, Eq. (6) is modified to:

y[n] =

L

l=1

lA( l)s[n] +w[n], n = 1, . . . , N . (7)

The noise vectors {w[n]}Nn=1 are assumed to be indepen-
dent, zero-mean, complex Gaussian with known covariance
matrix Rw. With no loss of generality, we can assume that
Rw = 2

wIM , where IM is an identity matrix of size M. If
this assumption is not satisfied, the model in Eq. (7) can
be pre-whitened.

Our goal is to estimate the target directions = [ 1, . . . , L]
T

from the measurements {y[n]}Nn=1 in the presence of un-
known complex amplitudes 1, . . . , L.

3. EQUIVALENT SPATIALLY CODED MODEL

In [1] and [2], it is shown that the su cient statistics for
estimation of from the measurements {y[n]}Nn=1 is given
by:

m =
1

N

N

n=1

y[n]sm[n], m = 1, . . . ,M , (8)

which is obtained by matching the observed data to the
mth signal, {sm[n]}

N
n=1. The su cient statistics matrix is

defined as

E = [ 1, . . . , M ] =
1

N

N

n=1

y[n]sH [n] . (9)

For orthogonal signals, the mth column of the matrix E
represents the array measurement of the signal transmitted
by the mth element. It can be shown that the su cient sta-
tistics { m}

M
m=1 are dependent for non-orthogonal signals.

Independent su cient statistics, {˜m}
M
m=1, can be obtained

by matching the measurements to the transformed signals
as follows:

˜m =
1

N

N

n=1

y[n]s̃m[n], m = 1, . . . ,M , (10)

where s̃m[n] is the mth element of the transformed signal
vector s̃[n], given by

s̃[n] = 1/2
U
H
s[n] , (11)

in which U and are the matrices of eigenvectors and
eigenvalues of the signal correlation matrix, Rs, respec-
tively. In matrix notation, the independent su cient sta-
tistics is given by

Ẽ = [˜1, . . . , ˜M ] =
1

N

N

n=1

y[n]s̃H [n] = EU 1/2 .

(12)
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The su cient statistics are obtained by a matched fil-
ter: temporal matching the measurement vectors to di er-
ent signal subspace components s̃[n]. In fact, ˜m represents
the measurement of the mth component of s̃[n] by the ar-
ray. Hence, the matching procedure results in M2 virtual
sensors instead ofM actual sensors in the conventional con-
figuration. An equivalent model for the su cient statistics
in matrix form can be obtained by substitution of (7) into
(12):

Ẽ = N

L

l=1

lA( l)U
1/2 +V , (13)

where V = [v1, . . . ,vM ] =
1

N

N

n=1
w[n]s̃H [n]. It can

be shown that the columns of V are zero-mean, i.i.d. with
covariance matrix 2

wI. By substitution of (5) into (13), the

model for the mth column of the matrix Ẽ can be stated
by

˜m = N

L

l=1

a( l) lm + vm, m = 1, . . . ,M , (14)

where lm denotes the mth element of the row vector

la
T ( l)U

1/2. Obviously, the row vector la
T ( l)U

1/2

carries information on the target DOA’s. However, in order
to obtain a model which enables smoothing of the covari-
ance matrix, this information will be ignored. Therefore,
the dependence of lm on the l is omitted.

4. TRANSMISSION DIVERSITY SMOOTHING

In this section, the proposed smoothing algorithm based on
the model described in (14) is presented. Eq. (14) can be
rewritten as:

˜m = NF( ) m + vm, m = 1, . . . ,M (15)

where F( ) = [a( 1), . . . ,a( L)] and m = [ 1m, . . . , Lm]
T .

As stated in Section 3, the equivalent model for the su -
cient statistics consists of M2 virtual sensors. We divided
these sensors into M sub-arrays of size M with identical
structure. The measurements from the mth subarray is
represented by the mth column of Ẽ Hence, the covariance
matrix of the mth sub-array can be obtained as:

R ˜
m

= NF( )E m
H
m F

H( ) +E vmv
H
m

2
w
I

. (16)

Obviously, the rank of the signal subspace is equal to one,
because rank E( m

H
m) = 1. R ˜

m

represents the auto-

correlation matrix of the response to the mth component
of the transmitted signal, s̃[n]. In the proposed method,
these matrices are smoothed, and therefore it is referred to
as Transmission Diversity Smoothing (TDS).

By averaging these matrices over m, we obtain

R̄˜ = 1
M

M

m=1

R ˜
m

= NF( )E 1
M

M

m=1
m

H
m FH( ) + 2

wI

= NF( )E 1
M

H FH( ) + 2
wI ,

(17)

where = [ 1, . . . , M ]. It can be shown that if the matrix
F( ) and the signal autocorrelation matrix, Rs are full-
rank, then the matrix H has full rank. This enables
using eigenstructure-base methods such as MUSIC for this
problem. Note that unlike the spatial smoothing, the array
aperture is not reduced. This fact results in higher DOA
estimation performance.

5. SIMULATION RESULTS

In this section, the localization performance using the pro-
posed TDS algorithm with orthogonal signal transmission
is evaluated and compared to the conventional model using
the spatial smoothing algorithm. The MUSIC algorithm is
used in both cases for target localization. A Uniformly Lin-
ear Array (ULA) of M = 5 sensors with half a wavelength
spacing is used. The scenario includes two targets (L = 2),
which are located at 1 = 0 and 2 = 15 , respectively. In
the spatial smoothing algorithm, the number of sensors in
each subarray is Ns = 4.

In Fig. 2, the performances of the first target localiza-
tion, 1, using di erent methods, are presented in terms of
root-mean-square error (RMSE). It can be seen that the
TDS algorithm with orthogonal transmitted signals out-
performs the other configurations in which the transmitted
signals are coherent. However, the CRB is not achieved by
this configuration, because in the smoothing procedure, we
dropped the information on carried by lm in Eq. (14).
The TDS algorithm with the coherent signals fails, because
the rank of the signal covariance matrix does not increase
in the averaging process.
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Figure 2: Performance of the TDS-MUSIC algorithm with
orthogonal ( = 0) and coherent ( = 1) signals, compared
to the spatial smoothing-MUSIC and CRB.

Fig. 3 illustrates the TDS-MUSIC spectrum using or-
thogonal and coherent signals, and with spatial smoothing,
where SNR = 15 dB. The TDS-MUSIC algorithm using
orthogonal transmitted signals localizes the two targets in
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higher accuracy than the spatial smoothing-MUSIC, while
TDS-MUSIC with coherent transmitted signals fails.

The performance of the TDS-MUSIC with orthogonal
transmitted signals for non-uniform linear array from Fig.
4 is shown in Fig. 5. As already discussed, the TDS is
not limited to any array geometry. The spatial smoothing
algorithm cannot be implemented in this case, because it
requires a ULA.
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Figure 3: Spatial spectrum of TDS-MUSIC with = 0 and
= 1 compared to the spatial smoothing-MUSIC; M = 5,

L = 2, 1 = 0 , 2 = 15 , SNR = 15 dB.
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Figure 4: Non-uniform linear array; d = /2

6. CONCLUSIONS

In this paper, a new approach for target localization in
active radar and sonar systems using spatially coded sig-
nal transmission was presented. The proposed TDS al-
gorithm spatially smooths the received signal correlation
matrix using transmission diversity, and it enables to use
eigenstructure-based techniques for multi-target localiza-
tion. The method decorrelates the recived signals which
may be reflected paths from di erent directions or the sig-
nal echo fom di erent targets. Unlike conventional spatial
smoothing or forward-backward averaging, the TDS does
not require a uniform or symmetric array. In fact, no as-
sumption of far-field targets or spatially white noise was
employed. Moreover, it does not decrease the array aper-
ture. The maximum number of targets which can be lo-
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Figure 5: Performance of the TDS-MUSIC algorithm with
orthogonal ( = 0) signals using non-uniform array, com-
pared to the CRB.

calized using the TDS method is M 1, where M is the
number of array elements.
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