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ABSTRACT

We present a new approach for estimating the velocity of a
source based on a model of differential phase change of the
modes in a shallow-water environment. This approach is
easily implementable and computationally fast compared to
our previous approaches [1, 2, 3]. We use the velocity and
bearing estimates of a strong interferer to suppress it in or-
der to detect and localize weaker sources. Range-rate local-
ization is particularly effective in discriminating sources lo-
cated in the near-endfire region, where conventional beam-
forming has the poorest discrimination.

1. INTRODUCTION

Matched Field Processing (MFP) techniques localize sour-
ces in a shallow water environment by computing a replica
vector that is based on channel modes with a given set of
environmental parameters [4]. The resulting beamformer
output produces a likelihood surface that shows peaks cor-
responding to the range and depth of the source. The surface
also contains peaks at ambiguous ranges and depths, which
makes it difficult to determine the true source and to distin-
guish the source from the interferer, particularly when there
is uncertainty about the environmental parameters.

The discrimination ability of conventional beamforming
(as well as of Minimum Variance Distortionless Response
(MVDR) methods [5]) is best at broadside and the poorest
at endfire. This is illustrated in Figure 1, which shows the
bearing response produced by a 400-sensor horizontal array
when the two sources, that are separated by five degrees, are
located (a) in the broadside region, and (b) near-endfire. In
this paper we localize in range-rate. Part of the motivation
for this is that range-rate resolution is highest near-endfire,
complementing the abilities of conventional beamformers,
which have the poorest bearing resolution near-endfire.

Recent papers have discussed approaches to passive lo-
calization of moving sources in range-rate, using non-para-
metric particle filtering (sequential resampling techniques)
[1, 2, 3]. An additional advantage of localizing in range-rate
is that the estimation is less sensitive to wavenumber errors
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that are due to environmental uncertainties [1]. A recursive
Bayesian state-space model, similar to that of Kalman filter,
is used by the authors in [2, 3] to incorporate target dynam-
ics. A method of sequential importance sampling (SIS) is
proposed for updating the likelihood. The method is based
on an approach to non-linear Bayesian state estimation that
employs a discrete approximation to the state probability
density function [6].

In this work we present a new method of estimating
the velocity of the source. In comparison with the particle-
filter approach, method is computationally fast, requires low
SNR, and provides an excellent resolution in the endfire
region. We also propose a method for estimating modal
phases that makes possible effective dynamic spatial can-
cellation needed for detection and localization of a source
in the presence of strong interference. Our previous ap-
proaches [1, 2, 3] assumed a vertical array geometry, while
a new method, described here, is generalized to tilted array
geometries (the calibration of which was considered in [7]),
and, in particular, horizontal towed-array geometry.

2. SIGNAL MODEL

We assume a shallow-water environment, which leads to
a signal model consisting of a superposition of modal re-
sponse patterns. The signal replica vector s

¯t
is written as

s
¯t
∝

M∑
m=1

ψ
¯m

� ϕ
¯m

· ψm(d)e−jkm·rt , (1)

where:

- ψ
¯m

is the profile of the mth mode sampled at the depths
for each sensor of the array,

- ϕ
¯m

is a vector similar to a ”free-space” steering vector
with the wavenumber replaced by the wavenumber of
the mode, containing the phases across the array due
to a source at bearing ϑs measured from the broadside
direction,

- ψm(d) is the profile of the mth mode sampled at the depth
of the source,

- km is the vertical wavenumber for mth mode,
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Fig. 1. Bearing response with sources (a) at 85 and 90 de-
grees and (b) at 5 and 10 degrees; SNR=-15dB, SIR=-10dB,
N=400.

- rt is the range between the first sensor of the array and the
source at time t,

- � represents the Hadamard (element by element) vector
product.

For a tilted linear array, the phases in the steering vector ϕ
¯m

are given by

ϕ
¯m

[n] = exp(jkm(n − 1)∆x cos γ sin ϑs),

where ∆x is the sensor spacing and γ is the tilt angle of the
array (γ = 0 for a horizontal, γ = π/2 for a vertical array).

The resulting signal vector s
¯t

is a superposition of mul-
tiple modes of propagation on each sensor of the array. It
is a column vector of length N , where N is the number of
sensors. It is convenient to rewrite Eqn. 1 in matrix form:

s
¯t

= H(ϑs, d)x
¯t, (2)

where:

- H is the N×M mode matrix, the mth column of which is
given by a modal response vector ψ

¯m
� ϕ

¯m
· ψm(d),

- x
¯t = e−jkm·rt is the vector of the initial phases for each

mode.

The motion of a source can be described using a state-
space model with the state equation

x
¯t = ·A(vs∆t) · x

¯t−1, (3)

where A = e−jkmvs∆t is a diagonal state-transition matrix
corresponding to the differential change in range for a hy-
pothesized velocity of the source, vs. Finally, the data is
modeled by the measurement equation

y
¯t

= atH(ϑs, d)x
¯t + n

¯t, (4)

where n
¯t is additive zero-mean complex Gaussian noise and

at is an additional random Gaussian distributed amplitude,
due to the fact that we are performing narrowband post-FFT
processing on a broadband source (we consider the case
where the source spectrum is broad compared to the FFT
bin width).

3. SVD BASED METHOD FOR PASSIVE
LOCALIZATION

We wish to estimate velocity based on the the differential
phase change of the modal amplitudes. This is similar in
spirit to Doppler processing. However, we have the added
challenge of estimating velocity in the presence of the ran-
dom source amplitudes at, which remove phase coherence
between successive data snapshot vectors. Therefore we do
not attempt to model the absolute phase of the wavefront;
instead we model the relative phase between modes.

A minimum mean-square error estimate of ax
¯
, based on

y
¯

(see equation 4), can be obtained as follows:

âtx
¯t = R(ax

¯
)y
¯
R−1

y
¯
y
¯
y
¯t

(5)

Assuming that atx
¯t ∼ CN [E {atx

¯t} , σ2
sI], where σ2

s is
the variance of at, we find that the covariance matrix of the
data vector is given by

Ry
¯
y
¯

= σ2
sHHT + σ2

nI, (6)

and the cross-covariance is given by

R(ax
¯
)y
¯

= σ2
sH + E{(ax

¯
)tn

¯
T
t } = σ2

sH (7)

Substituting 6 and 7 into 5, we obtain:

âtx
¯t = σ2

sH
T (σ2

sHHT + σ2
nI)−1y

¯t

= HT (HHT +
σ2

n

σ2
s

I)−1y
¯t

.
(8)
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Using the Woodbury’s identity (Sherman-Morrison for-
mula), equation 8 can be rewritten as follows:

âtx
¯t = (I +

σ2
s

σ2
n

HT H)−1HT y
¯t

(9)

It is clear from 9 that in the limit that σ2
n is much bigger

than σ2
s , the estimate âtx

¯t can be approximated as

âtx
¯t = HT y

¯t
(10)

We use state equation 3 to bring an estimate âtx
¯t back

to the time t = 0:

âtx
¯0

= A−t · âtx
¯t, (11)

where A−t is the inverse of At.
Let X̂ be a matrix, each column of which is an estimate

âtx
¯0

, obtained as follows

X̂ =
[
â0x

¯0
,A−1â1x

¯1
,A−2â2x

¯2
, ...,A−(t−1) ̂at−1x

¯t−1

]
.

This matrix would be a rank-1 outer product of x
¯0

and the
sequence of source amplitudes {at}, if only the source of
interest was present. Then an estimate of the initial mode
amplitudes is x̂

¯0
= u

¯max, where u
¯max is the left singu-

lar vector corresponding to the biggest singular value in the
singular value decomposition (SVD) of X̂.

To produce an ambiguity surface based on hypothesized
bearing and velocity, we first compute the mode matrix H(ϑh)
and the state transition matrix A(vh) for each hypothesized
values of bearing and velocity. Then, the ambiguity surface
function M(ϑh, vh) can be obtained by match filtering the
estimated replica vector with the data:

M(ϑh, vh) =
K∑

t=1

w
¯

T
t y

¯t
, (12)

where
w
¯t = H(ϑh)At(vh)x̂

¯0

is the weight vector.
Formula 12 requires finding an inner product across a

dimension equal to the number of sensors (an inner product
in array space). As the number of sensors in the array can be
very large, this procedure can be computationally intensive.

Equation 12 can be rewritten in the following equivalent
form:

M(ϑh, vh) =
K∑

t=1

[
H(ϑh)At(vh)x̂

¯0
]T

yt

=
K∑

t=1

[
At(vh)x̂

¯0
]T

H(ϑh)T yt

(13)

Defining vector x̃
¯t(vh) = At(vh)x̂

¯0
, we obtain

M(ϑh, vh) =
K∑

t=1

x̃
¯
T
t (vh)

[
HT (ϑh)y

¯t

]
. (14)

The procedure for calculating an ambiguity surface, de-
scribed by 14, requires finding an inner product across the
number of propagating modes (an inner product in mode
space). Finding an inner product in mode space is much
less computationally intensive than that in array space, as
the number of propagating modes is much smaller than the
number of sensors in the array. In our case, with M = 9 and
N = 400, computations are reduced by a factor of about 44.

Ambiguity surfaces produced by the SVD-based method
are shown on the Figure 2 for the case when the source is
observed in the presence of interference. The source and
the interferer have velocities −25 m/s and −4 m/s respec-
tively, where the minus sign means that both source and in-
terferer are moving toward the array. The initial bearing
of the source and interferer are 85 and 90 degrees respec-
tively. Figure 2 (a) shows an ambiguity surface when the
signal-to-interference ratio (SIR) is -2 dB and Figure 2 (b)
shows it when the SIR is -10 dB. We can see that SIR of
-10dB is not sufficient for the source to be visible. With low
SIR, only the velocity of the interferer vi and its bearing ϑi

can be estimated. Thus, the SVD-based method is able to
localize a source in near-endfire directions, but, in the pres-
ence of strong interference with SIR=-10dB, this ability is
degraded. We suggest an approach to suppressing this inter-
ference in the following section.

4. INTERFERER SPATIAL CANCELLATION

One approach discussed in [3] is to employ a dynamically
changed projection operator based on ”particles” derived
from sequential importance sampling.

Taking into account the interferer, the measurement equa-
tion 4 can be written as

y
¯t

= a(t)H(ϑs)x
¯t + b(t)H(ϑi)x

¯t + n
¯t, (15)

where b(t) is random Gaussian distributed amplitude due to
the interferer and ϑi is the bearing of the interferer.

To suppress the interference the data vector is modified
as follows:

y
¯t

→ (I − Pst
) y
¯t

, (16)

where Pst
is the projection operator and I is identity matrix.

The projection operator is recomputed for each time t as:

Pst
=

sts
†
t

s†tst

, (17)

where
st = H(ϑi)xt. (18)
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(b) SIR=-10dB

Fig. 2. Velocity-bearing ambiguity surfaces, obtained with
the SVD based method, with (a) weak and (b) strong inter-
ference; SNR=-15dB, N=400.

Here xt can be obtained for At(vi) using the SVD based
method presented in the previous section.

Figure 3 shows the ambiguity surface after the interfer-
ence depicted in Figure 2 (b) (the strong interference case,
SIR=-10 dB) has been suppressed in this manner.

5. CONCLUSIONS

The procedure which we present in this paper allows us to
implement effective detection and localization of a source in
a shallow water environment in the presence of a strong in-
terferer. It employs low dimensional inner-products for each
bin of the ambiguity surface, and is computationally faster
than the previously investigated particle-filtering based ap-
proach. This procedure also has relatively low SNR require-
ments (as low as -15 dB per-element). The method can ac-
commodate vertical, horizontal or general tilted array ge-
ometries.
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Fig. 3. Ambiguity surface in bearing and velocity, obtained
with the SVD-based method after interferer is cancelled,
SNR=-15dB, SIR=-10dB, N=400.
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